Bioreactor; Computational design; In silico; Scaffold bioprinting; Tissue engineering scaffolds
Abstract :
[en] Because production technologies for the fabrication of scaffolds for tissue engineering are becoming more and more advanced and aim to increase the controllability of the design of the scaffold and the robustness of the outcome as well as to be able to more closely mimic the native tissue architecture, it is key that the effect of the production process on the structural and functional properties of the construct is well understood. Computational models that can describe these effects will become indispensable with the (bio) fabrication field moving toward the fabrication of complex, gradient 3D structures in terms of cells and materials. They can facilitate high-throughput screenings of novel bioink formulations to determine their printability, optimal shape, and biocompatibility in function of the printer setup used. In addition, computational modeling can help in optimizing the design of the hardware (e.g., nozzle geometry for bioprinting) to improve certain properties of the printed construct (e.g., cell survival). Finally, optimal postprocessing of the construct can be achieved in a bioreactor setting. Also, computer models can play a role in providing information and understanding. This chapter provides an overview of computational models that have been developed to address questions related to quantification and optimization of the scaffold design, the fabrication process, and the postprocessing of the fabricated scaffold.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Reina-Romo, Esther
Papantoniou, Ioannis
Bloemen, Veerle
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit
Language :
English
Title :
4 - Computational design of tissue engineering scaffolds
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A.B. Dababneh., I.T. Ozbolat Bioprinting technology: a current state-of-the-art review J Manuf Sci Eng 136 6 2014 061016.
C. Mandrycky., Z. Wang., K. Kim., D.H. Kim 3D bioprinting for engineering complex tissues Biotechnol Adv 34 4 2016 422-434.
S.V. Murphy., A. Atala 3D bioprinting of tissues and organs Nat Biotechnol 32 8 2014 773-785.
Y. Guyot A Multiphysics Multiscale Computational Framework for the Simulation of Perfusion Bioreactor Processes in Bone Tissue Engineering 2015 (Ph.D. dissertation) http://hdl.handle.net/2268/189105.
Y. Guyot., B. Smeets., T. Odenthal., R. Subramani., F.P. Luyten., H. Ramon., et al. Immersed boundary models for quantifying flow-induced mechanical stimuli on stem cells seeded on 3D scaffolds in perfusion bioreactors PLoS Comput Biol 12 9 2016 e1005108 https://doi.org/10.1371/journal.pcbi.1005108.
M.A. Alias., P.R. Buenzli Modelling the effect of curvature on the collective behavior of cells growing new tissue Biophys J 112 1 2017 193-204.
T. Adachi., Y. Osako., M. Tanaka., M. Hojo., S.J. Hollister Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration Biomaterials 27 2006 3964-3972 16584771.
M.R. Dias., J.M. Guedes., C.L. Flanagan., S.J. Hollister., P.R. Fernandes Optimization of scaffold design for bone tissue engineering: a computational and experimental study Med Eng Phys 36 4 2014 448-457.
S.J. Hollister., R.D. Maddox., J.M. Taboas Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints Biomaterials 23 2002 4095-4103 10.1016/S0142-9612(02)00148-5.
H.C. Rodrigues., P.G. Coelho., P.R. Fernandes Multiscale modelling of bone tissue - remodelling and application to scaffold design P. Fernandes., P. Bártolo Advances on Modelling in Tissue Engineering. Computational Methods in Applied Sciences vol. 20 2011 Springer Dordrecht.
J.M. Taboas., R.D. Maddox., P.H. Krebsbach., S.J. Hollister Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds Biomaterials 24 2003 181-194 10.1016/S0142-9612(02)00276-4.
J.A. Sanz-Herrera., J.M. García-Aznar., M. Doblaré On scaffold designing for bone regeneration: a computational multiscale approach Acta Biomater 5 2009 219-229.
S. Van Bael., Y.C. Chai., S. Truscello., M. Moesen., G. Kerckhofs., H. Van Oosterwyck., J. Schrooten The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds Acta Biomater 8 7 2012 2824-2834.
M. Werner., S.B.G. Blanquer., S.P. Haimi., G. Korus., J.W.C. Dunlop., G.N. Duda., D.W. Grijpma., A. Petersen Adv Sci 4 2017 1600347.
M.A. Alias., P.R. Buenzli Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours Biomech Model Mechanobiol 17 5 2018 1357-1371.
C.M. Bidan., K.P. Kommareddy., M. Rumpler., P. Kollmannsberger., Y.J.M. Bréchet., P. Fratzl., et al. How linear tension converts to curvature: geometric control of bone tissue growth PLoS One 7 5 2012 e36336 https://doi.org/10.1371/journal.pone.0036336.
C.M. Bidan., P. Kollmannsberger., V. Gering., S. Ehrig., P. Joly., A. Petersen., V. Vogel., P. Fratzl., J.W. Dunlop Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during in vitro tissue growth J R Soc Interface 13 118 2016 20160136.
Y. Guyot., I. Papantoniou., Y.C. Chai., S. Van Bael., J. Schrooten., L. Geris A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study Biomech Model Mechanobiol 13 6 November 2014 1361-1371 10.1007/s10237-014-0577-5 Epub 2014 Apr 3.
L. Grassi., S.P. Vaananen., S. Amin Yavari., H. Weinans., J.S. Jurvelin., A.A. Zadpoor., H. Isaksson Experimental validation of finite element model for proximal composite femur using optical measurements J Mech Behav Biomed Mater 21 2013 86-94 10.1016/j.jmbbm.2013.02.006.
S.-I. Roohani-Esfahani., P. Newman., H. Zreiqat Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects Sci Rep 6 2016 Article number: 19468.
S. Checa., P.J. Prendergast A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modelling approach Ann Biomed Eng 37 1 2009 129-145.
R.J. McCoy., C. Jungreuthmayer., F.J. O-Brien Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor Biotechnol Bioeng 109 2012 1583-1594.
F. Zhao., T.J. Vaughan., L.M. McNamara Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures Biomech Model Mechanobiol 15 3 2016 561-577.
T.J. Vaughan., C.A. Mullen., S.W. Verbruggen., L.M. McNamara Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia Biomech Model Mechanobiol 14 4 2015 703-718.
J. Siepmann., H. Kranz., R. Bodmeier., N. Peppas HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics Pharm Res 16 1999 1748-1756.
B.S. Snorradóttir., F. Jónsdóttir., S.T. Sigurdsson., F. Thorsteinsson., M. Másson Numerical modelling and experimental investigation of drug release from layered silicone matrix systems Eur J Pharm Sci 49 2013 671-678.
Y. Wang., J. Pan., X. Han., C. Sinka., L. Ding A phenomenological model for the degradation of biodegradable polymers Biomaterials 29 2008 3393-3401.
C.S. Brazel., N.A. Peppas Modelling of drug release from swellable polymers Eur J Pharm Biopharm 49 2000 47-58.
D.P. Byrne., D. Lacroix., J.A. Planell., D.J. Kelly., P.J. Prendergast Simulation of tissue differentiation in a scaffold as a function of porosity. Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering Biomaterials 28 2007 5544-5554.
X. Sun., Y. Kang., J. Bao., Y. Zhang., Y. Yang., X. Zhou Modelling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors Biomaterials 34 2013 4971-4981.
V. Manhas., Y. Guyot., G. Kerckhofs., Y.C. Chai., L. Geris Computational modelling of local calcium ions release from calcium phosphate-based scaffolds Biomech Model Mechanobiol 16 2017 425 https://doi.org/10.1007/s10237-016-0827-9.
J.A. Sanz-Herrera., A.R. Boccaccini Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds Int J Solid Struct 48 2 2011 257-268.
H. Mehdizadeh., E.S. Bayrak., C. Lu., S.I. Somo., B. Akar., E.M. Brey., A. Cinar Agent-based modeling of porous scaffold degradation and vascularization: optimal scaffold design based on architecture and degradation dynamics Acta Biomater 27 November 2015 167-178 10.1016/j.actbio.2015.09.011 Epub 2015 Sep. 9.
H. Kang., S.J. Hollister., F. La Marca., P. Park., C.-Y. Lin Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering J Biomech Eng 135 2013 101013 23897113.
R.J. Shipley., G.W. Jones., R.J. Dyson., B.G. Sengers., C.L. Bailey., C.P. Please., J. Malda Design criteria for a printed tissue engineering construct: a mathematical homogenization approach J Theor Biol 259 2 2009 489-502 10.1016/j.jtbi.2009.03.037.
A. Carlier., G.A. Skvortsov., F. Hafezi., E. Ferraris., J. Patterson., B. Koç., H. Van Oosterwyck Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering Biofabrication 8 2 May 17, 2016 025009 10.1088/1758-5090/8/2/025009.
A. Carlier., L. Geris., N. van Gastel., G. Carmeliet., H. Van Oosterwyck Oxygen as a critical determinant of bone fracture healing-a multiscale model J Theor Biol 365 January 21, 2015 247-264 10.1016/j.jtbi.2014.10.012 Epub 2014 Oct 24.
A. Carlier., L. Geris., K. Bentley., G. Carmeliet., P. Carmeliet., H. Van Oosterwyck MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells PLoS Comput Biol 8 10 2012 e1002724 10.1371/journal.pcbi.1002724.
A. Farzadi., et al. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering PLoS One 9 9 2014 e108252.
T. Gao., et al. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach Biofabrication 10 3 2018 034106.
M. Perez., et al. Surface quality enhancement of fused deposition modelling (FDM) printed samples based on the selection of critical printing parameters Materials 11 8 2018.
M. Castilho., M. Dias., U. Gbureck., J. Groll., P. Fernandes., I. Pires., B. Gouveia., J. Rodrigues., E. Vorndran Fabrication of computationally designed scaffolds by low temperature 3D printing Biofabrication 5 3 September 2013 035012 10.1088/1758-5082/5/3/035012.
R. Suntornnond., et al. A mathematical model on the resolution of extrusion bioprinting for the development of new bioinks Materials 9 9 2016.
N. Paxton., et al. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability Biofabrication 9 4 2017 044107.
J. Gohl., et al. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks Biofabrication 10 3 2018 034105.
J.M. Lee., W.Y. Yeong A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters J Virtual Phys Prototyp 10 2015 3-8.
D. Chimene., et al. Advanced bioinks for 3D printing: a materials science perspective Ann Biomed Eng 44 6 2016 2090-2102.
H. Tan., et al. Numerical simulation of droplet ejection of thermal inkjet printheads Int J Numer Methods Fluid 77 2015 544-570.
M.E. Pepper., V. Seshadri., T. Burg., B.W. Booth., K.J. Burg., R.E. Groff Cell settling effects on a thermal inkjet bioprinter Conf Proc IEEE Eng Med Biol Soc 2011 2011 3609-3612 10.1109/IEMBS.2011.6090605.
M.E. Pepper., V. Seshadri., T.C. Burg., K.J. Burg., R.E. Groff Characterizing the effects of cell settling on bioprinter output Biofabrication 4 1 March 2012 011001 10.1088/1758-5082/4/1/011001 Epub 2012 Jan 18.
A. Tirella., F. Vozzi., C. De Maria., G. Vozzi., T. Sandri., D. Sassano., L. Cognolato., A. Ahluwalia Substrate stiffness influences high resolution printing of living cells with an ink-jet system J Biosci Bioeng 112 1 July 2011 79-85 10.1016/j.jbiosc.2011.03.019.
C. Mezel., et al. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modelling Biofabrication 2 1 2010 014103.
T. Billiet., E. Gevaert., T. De Schryver., M. Cornelissen., P. Dubruel The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability Biomaterials 35 2014 49-62.
M. Li., X. Tian., D.J. Schreyer., X. Chen Effect of needle geometry on flow rate and cell damage in the dispensing-based biofabrication process Biotechnol Prog 27 2011 1777-1784.
K. Nair., M. Gandhi., S. Khalil., K.C. Yan., M. Marcolongo., K. Barbee., W. Sun Characterization of cell viability during bioprinting processes Biotechnol J 4 2009 1168-1177.
A. Blaeser., D.F.D. Campos., U. Puster., W. Richtering., M.M. Stevens., H. Fischer Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity Adv Healthc Mater 5 2016 326-333.
P.L. Blackshear., F.D. Dorman., J.H. Steinbach Some mechanical effects that influence haemolysis Trans Am Soc Artif Intern Organs 11 1965 112.
M.G. Li., X.Y. Tian., N. Zhu., D.J. Schreyer., X.B. Chen Modelling process-induced cell damage in the bio-dispensing process Tissue Eng C Methods 16 2010 533-542.
I.T. Ozbolat., Y. Yu Bioprinting toward organ fabrication: challenges and future trends IEEE Trans Biomed Eng 60 3 2013 691-699.
M. McCune., A. Shafiee., G. Forgacs., I. Kosztin Predictive modelling of post bioprinting structure formation Soft Matter 10 11 March 21, 2014 1790-1800.
A. Shafiee., M. McCune., G. Forgacs., I. Kosztin Post-deposition bioink self-assembly: a quantitative study Biofabrication 7 4 November 5, 2015 045005 10.1088/1758-5090/7/4/045005.
E. Flenner., L. Janosi., B. Barz., A. Neagu., G. Forgacs., I. Kosztin Phys Rev E Stat Nonlinear Soft Matter Phys 85 2012 031907.
K. Jakab., A. Neagu., V. Mironov., R.P. Markwald., G. Forgacs Engineering biological structures of prescribed shape using selfassembling multicellular systems Proc Natl Acad Sci USA 101 2004 2864-2869.
K. Jakab., B. Damon., A. Neagu., A. Kachurin., G. Forgacs Three-dimensional tissue constructs built by bioprinting Biorheology 43 2006 509-513.
K. Jakab., C. Norotte., B. Damon., F. Marga., A. Neagu., C.L. Besch- Williford., A. Kachurin., K.H. Church., H. Park., V. Mironov., R. Markwald., G. Vunjak-Novakovic., G. Forgacs Tissue engineering by self-assembly of cells printed into topologically defined structures Tissue Eng 14 3 2008 413-421.
F. Marga., A. Neagu., I. Kosztin., G. Forgacs Developmental biology and tissue engineering Birth Defects Res C 81 2007 320-328.
A. Neagu., K. Jakab., R. Jamison., G. Forgacs Role of physical mechanisms in biological self-organization Phys Rev Lett 95 2005 178104.
A. Neagu., I. Kosztin., K. Jakab., B. Barz., M. Neagu., R. Jamison., G. Forgacs Computational modelling of tissue self-assembly Mod Phys Lett B 20 20 2006 1217-1231.
Y. Sun., X. Yang., Q. Wang In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations Biofabrication 6 1 March 2014 015008.
X. Yang., V. Mironov., Q. Wang Modeling fusion of cellular aggregates in biofabrication using phase field theories J Theor Biol 303 June 21, 2012 110-118 10.1016/j.jtbi.2012.03.003.
M. Cioffi., F. Boschetti., M.T. Raimondi., G. Dubini Modelling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model Biotechnol Bioeng 93 2006 500-510.
C. Jungreuthmayer., S.W. Donahue., M.J. Jaasma., A.A. Al-Munajjed., J. Zanghellini., D.J. Kelly., et al. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors Tissue Eng 15 2009 1141-1149.
F. Maes., T. Claessens., M. Moesen., H. Van Oosterwyck., P. Van Ransbeeck., P. Verdonck Computational models for wall shear stress estimation in scaffolds: a comparative study of two complete geometries J Biomech 45 2012 1586-1592.
M.T. Raimondi., F. Boschetti., L. Falcone., F. Migliavacca., A. Remuzzi., G. Dubini The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches Biorheology 41 2004 401-410.
R. Voronov., S. Van Gordon., V.I. Sikavitsas., D.V. Papavassiliou Computational modelling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT J Biomech 43 2010 1279-1286.
S. Truscello., G. Kerckhofs., S. Van Bael., G. Pyka., J. Schrooten., et al. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study Acta Biomater 8 2012 1648-1658 22210520.
R.J. McCoy., F.J. O’Brien Visualizing feasible operating ranges within tissue engineering systems using a “windows of operation” approach: a perfusion-scaffold bioreactor case study Biotechnol Bioeng 109 2012 3161-3171.
V.I. Sikavitsas., G.N. Bancroft., J.J. Lemoine., M.A.K. Liebschner., M. Dauner., A.G. Mikos Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds Ann Biomed Eng 33 2005 63-70.
I. Papantoniou., Y.C. Chai., F.P. Luyten., J. Schrooten Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration Tissue Eng C Methods 19 2013 596-609.
I. Papantoniou., M. Sonnaert., L. Geris., F.P. Luyten., J. Schrooten., G. Kerckhofs Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography Tissue Eng C Methods 20 2014 177-187.
A. Lesman., Y. Blinder., S. Levenberg Modelling of flow-induced shear stress applied on 3D cellular scaffolds: implications for vascular tissue engineering Biotechnol Bioeng 105 2010 645-654.
I. Papantoniou., Y. Guyot., M. Sonnaert., G. Kerckhofs., F.P. Luyten., L. Geris., et al. Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes Biotechnol Bioeng 111 12 2014 2560-2570 https://doi.org/10.1002/bit.25303.
Y. Guyot., F.P. Luyten., J. Schrooten., I. Papantoniou., L. Geris A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor Biotechnol Bioeng 112 2015 2591-2600 https://doi.org/10.1002/bit.25672.
Y. Guyot., I. Papantoniou., F.P. Luyten., L. Geris Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold Biomech Model Mechanobiol 15 2016 169 https://doi.org/10.1007/s10237-015-0753-2.
C. Williams., O.E. Kadri., R.S. Voronov., V.I. Sikavitsas Time-dependent shear stress distributions during extended flow perfusion culture of bone tissue engineered constructs Fluid 3 2 2018 25 10.3390/fluids3020025.
K. Wuertz., K. Godburn., J.C. Iatridis MSC response to pH levels found in degenerating intervertebral discs Biochem Biophys Res Commun 379 2009 824-829.
L.E. Monfoulet., P. Becquart., D. Marchat., K. Vandamme., M. Bourguignon., E. Pacard., et al. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs Tissue Eng 20 2014 1827-1840.
M.S. Hossain., D.J. Bergstrom., X.B. Chen Prediction of cell growth rate over scaffold strands inside a perfusion bioreactor Biomech Model Mechanobiol 14 2 2014 333-344 10.1007/s10237-014-0606-4.
M.S. Hossain., D.J. Bergstrom., X.B. Chen Modelling and simulation of the chondrocyte cell growth, glucose consumption and lactate production within a porous tissue scaffold inside a perfusion bioreacto Biotechnol Rep 5 2015 55-62.
M.M. Nava., M.T. Raimondi., R. Pietrabissa A multiphysics 3D model of tissue growth under interstitial perfusion in a tissue-engineering bioreactor Biomech Model Mechanobiol 12 6 November 2013 1169-1179 10.1007/s10237-013-0473-4.
R.A. Fisher The arrangement of field experiments J Ministry Agric Great Britain 33 1926 503-513.
K. Desai., C. Sung DOE optimization and phase morphology of electrospun nanofibers of PANI/PMMA blends NSTI Nanotechnol 3 2004 429-432.
A. Nazir., N. Khenoussi., L. Schacher., T. Hussain., D. Adolphe., A.H. Hekmati Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning RSC Adv 5 2015 76892-76897.
F.A.A. Ruiter., C. Alexander., F.R.A.J. Rose., J.I. Segal A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies Biomed Mater 12 5 September 25, 2017 055009 10.1088/1748-605X/aa7b54.
P. Sheshadri., R.A. Shirwaiker Characterization of material-process-structure interactions in the 3D bioplotting of polycaprolactone 3D Print Addit Manuf 2 1 2015 https://doi.org/10.1089/3dp.2014.0025.
P. Ravi., P.S. Shiakolas., J.C. Oberg., S. Faizee., A.K. Batra On the development of a modular 3D bioprinter for research in biomedical device fabrication ASME International Mechanical Engineering Congress and Exposition vol. 2A 2015 ASME 10.1115/IMECE2015-51555 Advanced Manufacturing: V02AT02A059.
H.A. Almeida., P.J. Bártolo Topological optimisation of scaffolds for tissue engineering Procedia Eng. 59 2013 298-306.
A. Boccaccio., A.E. Uva., M. Fiorentino., L. Lamberti., G. Monno A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds Int J Biol Sci 12 1 2016 26722213.
F. Boukouvala., M.G. Ierapetritou Surrogate-based optimization of expensive flowsheet modelling for continuous pharmaceutical manufacturing J Pharm Innov 8 2 2013 131-145.
H.M. Chi., H. Moskowitz., O.K. Ersoy., K. Altinkemer., P.F. Gavin., B.E. Huff., B.A. Olsen Machine learning and genetic algorithms in pharmaceutical development and manufacturing processes Decis Support Syst 48 1 2009 69-80 ISSN 0167-9236 https://doi.org/10.1016/j.dss.2009.06.010.
H.J. Kushner A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise J Basic Eng 86 1 1964 97-106.
J. Mockus Bayesian Approach to Global Optimization: Theory and Applications 1989 Kluwer Academic Publishers.
J. Nogueira., et al. Unscented Bayesian Optimization for Safe Robot Grasping 2016 IROS.
J.R. Banga Optimization in computational systems biology BMC Syst Biol 2 1 2008 47.
F. Boukouvala., et al. Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO Eur J Oper Res 252 2016 701-727.
C.-L. Hwang., A.S.M. Masud Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey 1979 Springer.
T.M. Morrison., M.L. Dreher., S. Nagaraja., L.M. Angelone., W. Kainz The role of computational modeling and simulation in the total product life cycle of peripheral vascular devices J Med Dev Trans ASME 11 2 2017 024503.
T.M. Morrison., P. Pathmanathan., M. Adwan., E. Margerrison Advancing regulatory science with computational modeling for medical devices at the FDA’s office of science and engineering laboratories Front Med 5 2018 241 10.3389/fmed.2018.00241.
S. Kyle., Z.M. Jessop., S.P. Tarassoli., A. Al-Sabah., I.S. Whitaker Assessing printability of bioinks. (Chapter 9) 3D Bioprinting for Reconstructive Surgery 2017 173-189.
H.V. Unadkat., M. Hulsman., K. Cornelissen., B.J. Papenburg., R.K. Truckenmüller., A.E. Carpenter., M. Wessling., G.F. Post., M. Uetz., M.J. Reinders., D. Stamatialis., C.A. van Blitterswijk., J. de Boer An algorithm-based topographical biomaterials library to instruct cell fate Proc Natl Acad Sci USA 108 40 2017 16565-16570.
F. Sefat., A. Atala., M. Mozafari An introduction to tissue engineering scaffold. (Chapter 1) F. Sefat., A. Atala. M. Mozafari The Handbook for Tissue Engineering Scaffolds 2019 Elsevier.
J.P. St-Pierre Fabrication techniques of tissue engineering scaffolds. (Chapter 6) F. Sefat., A. Atala. M. Mozafari The Handbook for Tissue Engineering Scaffolds 2019 Elsevier.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.