[en] Early limb bud development has been of considerable interest for the study of embryological development and especially morphogenesis. The focus has long been on biochemical signalling and less on cell biomechanics and mechanobiology. However, their importance cannot be understated since tissue shape changes are ultimately controlled by active forces and bulk tissue rheological properties that in turn depend on cell-cell interactions as well as extracellular matrix composition. Moreover, the feedback between gene regulation and the biomechanical environment is still poorly understood. In recent years, novel experimental techniques and computational models have reinvigorated research on this biomechanical and mechanobiological side of embryological development. In this review, we consider three stages of early limb development, namely: outgrowth, elongation, and condensation. For each of these stages, we summarize basic biological regulation and examine the role of cellular and tissue mechanics in the morphogenetic process.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sermeus, Yvenn ; MeBioS, KU Leuven, 3000 Leuven, Belgium. ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven
Vangheel, Jef ; MeBioS, KU Leuven, 3000 Leuven, Belgium. ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, ; SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven
Smeets, Bart ; MeBioS, KU Leuven, 3000 Leuven, Belgium. ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven
Tylzanowski, Przemko; SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 ; Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical
Language :
English
Title :
Mechanical Regulation of Limb Bud Formation.
Publication date :
26 January 2022
Journal title :
Cells
eISSN :
2073-4409
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Ch
Volume :
11
Issue :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Funding number :
1SA5419N/Research Foundation - Flanders/; 11D9921N/Research Foundation - Flanders/; 12Z6118N/Research Foundation - Flanders/; G0D3420N/Research Foundation - Flanders/; C14/18/055/KU Leuven/
Hamant, O. Mechano-devo. Mech. Dev. 2017, 145, 2–9. [CrossRef] [PubMed]
Wyngaarden, L.A.; Vogeli, K.M.; Ciruna, B.G.; Wells, M.; Hadjantonakis, A.K.; Hopyan, S. Oriented cell motility and division underlie early limb bud morphogenesis. Development 2010, 137, 2551–2558. [CrossRef] [PubMed]
Turing, A.M. The chemical basis of morphogenesis. Bull. Math. Biol. 1952, 52, 153–197. [CrossRef]
Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 1969, 25, 1–47. [CrossRef]
Raspopovic, J. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 2014, 345, 566–570. [CrossRef]
Towers, M.; Wolpert, L.; Tickle, C. Gradients of signalling in the developing limb. Curr. Opin. Cell Biol. 2012, 24, 181–187. [CrossRef]
Gros, J.; Tabin, C.J. Vertebrate limb bud formation is initiated by localized epithelial-to-mesenchymal transition. Science 2014, 343, 1253–1256. [CrossRef]
Vogel, A.; Rodriguez, C.; Izpisúa-Belmonte, J.C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 1996, 122, 1737–1750. [CrossRef]
Royle, S.R.; Tabin, C.J.; Young, J.J. Limb positioning and initiation: An evolutionary context of pattern and formation. Dev. Dyn. 2021. [CrossRef]
Pasiliao, C.C.; Hopyan, S. Cell ingression: Relevance to limb development and for adaptive evolution. Genesis 2018, 56, e23086. [CrossRef]
Janners, M.Y.; Searls, R.L. Changes in rate of cellular proliferation during the differentiation of cartilage and muscle in the mesenchyme of the embryonic chick wing. Dev. Biol. 1970, 23, 136–165. [CrossRef]
Searls, R.L.; Janners, M.Y. The initiation of limb bud outgrowth in the embryonic chick. Dev. Biol. 1971, 24, 198–213. [CrossRef]
Morishita, Y.; Iwasa, Y. Growth based morphogenesis of vertebrate limb bud. Bull. Math. Biol. 2008, 70, 1957–1978. [CrossRef]
Boehm, B.; Westerberg, H.; Lesnicar-Pucko, G.; Raja, S.; Rautschka, M.; Cotterell, J.; Swoger, J.; Sharpe, J. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol. 2010, 8. [CrossRef] [PubMed]
Gao, B.; Yang, Y. Planar cell polarity in vertebrate limb morphogenesis. Curr. Opin. Genet. Dev. 2013, 23, 438–444. [CrossRef]
Damon, B.J.; Mezentseva, N.V.; Kumaratilake, J.S.; Forgacs, G.; Newman, S.A. Limb bud and flank mesoderm have distinct “physical phenotypes” that may contribute to limb budding. Dev. Biol. 2008, 321, 319–330. [CrossRef]
Brodland, G.W. The Differential Interfacial Tension Hypothesis (DITH): A Comprehensive Theory for the Self-Rearrangement of Embryonic Cells and Tissues. J. Biomech. Eng. 2002, 124, 188–197. [CrossRef]
David, G.R.; Guevorkian, K.; Douezan, S.; Brochard-Wyart, F. Soft Matter Models of Developing Tissues and Tumors. Science 2012, 82, 910–917.
Hopyan, S. Biophysical regulation of early limb bud morphogenesis. Dev. Biol. 2017, 492, 429–433. [CrossRef]
Ninomiya, H.; Winklbauer, R. Epithelial coating controls mesenchymal shape change through tissue-positioning effects and reduction of surface-minimizing tension. Nat. Cell Biol. 2008, 10, 61–69. [CrossRef]
Pawlizak, S.; Fritsch, A.W.; Grosser, S.; Ahrens, D.; Thalheim, T.; Riedel, S.; Kießling, T.R.; Oswald, L.; Zink, M.; Manning, M.L.; et al. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition. New J. Phys. 2015, 17, 083049. [CrossRef]
Bi, D.; Lopez, J.H.; Schwarz, J.M.; Lisa Manning, M. Energy barriers and cell migration in densely packed tissues. Soft Matter 2014, 10, 1885–1890. [CrossRef]
Wang, B.; Sinha, T.; Jiao, K.; Serra, R.; Wang, J. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum. Mol. Genet. 2011, 20, 271–285. [CrossRef] [PubMed]
Sanders, T.A.; Llagostera, E.; Barna, M. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 2013, 497, 628–632. [CrossRef] [PubMed]
Hertwig, O. Das Problem der Befruchtung und der Isotropie des Eies. Eine Theorie der Vererbung. Jenaische Zeitschrift für Naturwissenschaft 1884, 18, 274.
Baena-López, L.A.; Baonza, A.; García-Bellido, A. The orientation of cell divisions determines the shape of Drosophila organs. Curr. Biol. 2005, 15, 1640–1644. [CrossRef]
Tawk, M.; Araya, C.; Lyons, D.A.; Reugels, A.M.; Girdler, G.C.; Bayley, P.R.; Hyde, D.R.; Tada, M.; Clarke, J.D. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature 2007, 446, 797–800. [CrossRef]
Lesnicar-Pucko, G.; Belmonte, J.M.; Musy, M.; Glazier, J.A.; Sharpe, J. Cellular mechanisms of chick limb bud morphogenesis. bioRxiv 2020. [CrossRef]
Morishita, Y.; Kuroiwa, A.; Suzuki, T. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development. Development 2015, 142, 1672–1683. [CrossRef]
Li, S.; Muneoka, K. Cell migration and chick limb development: Chemotactic action of FGF-4 and the AER. Dev. Biol. 1999, 211, 335–347. [CrossRef]
Shellard, A.; Mayor, R. Durotaxis: The Hard Path from In Vitro to In Vivo. Dev. Cell 2021, 56, 227–239. [CrossRef]
Keller, R.; Davidson, L.; Edlund, A.; Elul, T.; Ezin, M.; Shook, D.; Skoglund, P. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. B Biol. Sci. 2000, 355, 897–922. [CrossRef]
Voiculescu, O.; Bertocchini, F.; Wolpert, L.; Keller, R.E.; Stern, C.D. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 2007, 449, 1049–1052. [CrossRef]
Keller, R.; Shook, D.; Skoglund, P. The forces that shape embryos: Physical aspects of convergent extension by cell intercalation. Phys. Biol. 2008, 5, 015007. [CrossRef]
Belmonte, J.M.; Swat, M.H.; Glazier, J.A. Filopodial-Tension Model of Convergent-Extension of Tissues. PLoS Comput. Biol. 2016, 12, e1004952. [CrossRef]
Anbari, S.; Buceta, J. Self-sustained planar intercalations due to mechanosignaling feedbacks lead to robust axis extension during morphogenesis. Sci. Rep. 2020, 10, 10973. [CrossRef]
Wen, J.; Liu, J.; Lau, K.; Liu, H.; Hopyan, S.; Sun, Y. Automated micro-aspiration of mouse embryo limb bud tissue. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2667–2672. [CrossRef]
Wen, J.; Tao, H.; Lau, K.; Liu, H.; Simmons, C.A.; Sun, Y.; Hopyan, S. Cell and Tissue Scale Forces Coregulate Fgfr2-Dependent Tetrads and Rosettes in the Mouse Embryo. Biophys. J. 2017, 112, 2209–2218. [CrossRef]
Kida, N.; Morishita, Y. Continuum mechanical modeling of developing epithelial tissues with anisotropic surface growth. Finite Elem. Anal. Des. 2018, 144, 49–60. [CrossRef]
McMillen, P.; Holley, S.A. The tissue mechanics of vertebrate body elongation and segmentation. Curr. Opin. Genet. Dev. 2015, 32, 106. [CrossRef]
Banavar, S.P.; Carn, E.K.; Rowghanian, P.; Stooke-Vaughan, G.; Kim, S.; Campàs, O. Mechanical control of tissue shape and morphogenetic flows during vertebrate body axis elongation. Sci. Rep. 2021, 11, 1–14. [CrossRef] [PubMed]
Fowler, D.A.; Larsson, H.C. The tissues and regulatory pattern of limb chondrogenesis. Dev. Biol. 2020, 463, 124–134. [CrossRef] [PubMed]
Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92. [CrossRef]
Summerbell, D.; Wolpert, L. Cell density and cell division in the early morphogenesis of the chick wing. Nat. New Biol. 1972, 239, 24–26. [CrossRef]
Hall, B.K.; Hall, B.K.; Miyake, T. All for one and one for all: Condensations and the initiation of skeletal development. Bioessays 2000, 22, 138–147. [CrossRef]
Akiyama, H.; Chaboissier, M.C.; Martin, J.F.; Schedl, A.; De Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002, 16, 2813–2828. [CrossRef]
Hannezo, E.; Heisenberg, C.P. Mechanochemical Feedback Loops in Development and Disease. Cell 2019, 178, 12–25. [CrossRef]
Miura, T.; Shiota, K. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: Experimental verification of theoretical models. Anat. Rec. 2000, 258, 100–107. [CrossRef]
Bobick, B.E.; Chen, F.H.; Le, A.M.; Tuan, R.S. Regulation of the chondrogenic phenotype in culture. Birth Defects Res. Part C-Embryo Today Rev. 2009, 87, 351–371. [CrossRef]
Kosher, R.A.; Walker, K.H.; Ledger, P.W. Temporal and spatial distribution of fibronectin during development of the embryonic chick limb bud. Cell Differ. 1982, 11, 217–228. [CrossRef]
Singley, C.T.; Solursh, M. The spatial distribution of hyaluronic acid and mesenchymal condensation in the embryonic chick wing. Dev. Biol. 1981, 84, 102–120. [CrossRef]
Rousche, K.T.; Knudson, C.B. Temporal expression of CD44 during embryonic chick limb development and modulation of its expression with retinoic acid. Matrix Biol. 2002, 21, 53–62. [CrossRef]
Culty, M.; Nguyen, H.A.; Underhill, C.B. The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J. Cell Biol. 1992, 116, 1055–1062. [CrossRef]
Knudson, C.B. Hyaluronan-cell interactions during chondrogenesis and matrix assembly. Cells Mater 1998, 8, 3356.
Ma, S.K.Y.; Chan, A.S.F.; Rubab, A.; Chan, W.C.W.; Chan, D. Extracellular Matrix and Cellular Plasticity in Musculoskeletal Development. Front. Cell Dev. Biol. 2020, 8, 781. [CrossRef]
Singh, P.; Schwarzbauer, J.E. Fibronectin matrix assembly is essential for cell condensation during chondrogenesis. J. Cell Sci. 2014, 127, 4420–4428. [CrossRef]
Melnick, M.; Jaskoll, T.; Brownell, A.G.; Macdougall, M.; Bessem, C.; Slavkin, H.C. Spatiotemporal patterns of fibronectin distribution during embryonic development. Development 1981, 1, 203–212. [CrossRef]
Dessau, W.; Mark, H.V.D.; Mark, K.V.D.; Fischer, S. Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. Development 1980, 57, 51–60. [CrossRef]
Zhu, M.; Tao, H.; Samani, M.; Luo, M.; Wang, X.; Hopyan, S.; Sun, Y. Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc. Natl. Acad. Sci. USA 2020, 117, 4781–4791. [CrossRef] [PubMed]
Christley, S.; Alber, M.S.; Newman, S.A. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput. Biol. 2007, 3, 743–753. [CrossRef] [PubMed]
Vega, M.E.; Schwarzbauer, J.E. Collaboration of fibronectin matrix with other extracellular signals in morphogenesis and differentiation. Curr. Opin. Cell Biol. 2016, 42, 1–6. [CrossRef] [PubMed]
Winklbauer, R. Dynamic cell–cell adhesion mediated by pericellular matrix interaction—A hypothesis. J. Cell Sci. 2019, 132, jcs231597. [CrossRef]
Oberlender, S.A.; Tuan, R.S. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 1994, 120, 177–187. [CrossRef]
Bi, W.; Deng, J.M.; Zhang, Z.; Behringer, R.R.; de Crombrugghe, B. Sox9 is required for cartilage formation. Nat. Genet. 1999, 22, 85–89. [CrossRef]
Barna, M.; Niswander, L. Visualization of Cartilage Formation: Insight into Cellular Properties of Skeletal Progenitors and Chondrodysplasia Syndromes. Dev. Cell 2007, 12, 931–941. [CrossRef]
Cho, S.H.; Oh, C.D.; Kim, S.J.; Kim, I.C.; Chun, J.S. Retinoic acid inhibits chondrogenesis of mesenchymal cells by sustaining expression of N-cadherin and its associated proteins. J. Cell. Biochem. 2003, 89, 837–847. [CrossRef]
Chanet, S.; Martin, A.C. Mechanical Force Sensing in Tissues. Prog. Mol. Biol. Transl. Sci. 2014, 126, 317–352. [CrossRef] [PubMed]
Holle, A.W.; Engler, A.J. More than a feeling: Discovering, understanding, and influencing mechanosensing pathways. Curr. Opin. Biotechnol. 2011, 22, 648–654. [CrossRef] [PubMed]
Chan, C.J.; Heisenberg, C.P.; Hiiragi, T. Coordination of Morphogenesis and Cell-Fate Specification in Development. Curr. Biol. 2017, 27, R1024–R1035. [CrossRef] [PubMed]
Wozniak, M.A.; Chen, C.S. Mechanotransduction in development: A growing role for contractility. Nat. Rev. Mol. Cell Biol. 2009, 10, 34–43. [CrossRef]
Klumpers, D.D.; Zhao, X.; Mooney, D.J.; Smit, T.H. Cell mediated contraction in 3D cell-matrix constructs leads to spatially regulated osteogenic differentiation. Integr. Biol. 2013, 5, 1174. [CrossRef]
Klumpers, D.D.; Mooney, D.J.; Smit, T.H. From Skeletal Development to Tissue Engineering: Lessons from the Micromass Assay. Tissue Eng. Part B Rev. 2015, 21, 427–437. [CrossRef]
Onesto, V.; Barrell, W.B.; Okesola, M.; Amato, F.; Gentile, F.; Liu, K.J.; Chiappini, C. A quantitative approach for determining the role of geometrical constraints when shaping mesenchymal condensations. Biomed. Microdevices 2019, 21, 1–10. [CrossRef]
Takahashi, I.; Nuckolls, G.H.; Takahashi, K.; Tanaka, O.; Semba, I.; Dashner, R.; Shum, L.; Slavkin, H.C. Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J. Cell Sci. 1998, 111 Pt 1, 2067–2076. [CrossRef]
Hoon, J.; Tan, M.; Koh, C.G. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells 2016, 5, 17. [CrossRef]
Ghosh, S.; Laha, M.; Mondal, S.; Sengupta, S.; Kaplan, D.L. In vitro model of mesenchymal condensation during chondrogenic development. Biomaterials 2009, 30, 6530–6540. [CrossRef]
Takemoto, K.; Ishihara, S.; Mizutani, T.; Kawabata, K.; Haga, H. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase a signaling pathway. PLoS ONE 2015, 10, e0117937. [CrossRef] [PubMed]
Woods, A.; Wang, G.; Beier, F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem. 2005, 280, 11626–11634. [CrossRef] [PubMed]
Kim, M.J.; Kim, S.; Kim, Y.; Jin, E.J.; Sonn, J.K. Inhibition of RhoA but not ROCK induces chondrogenesis of chick limb mesenchymal cells. Biochem. Biophys. Res. Commun. 2012, 418, 500–505. [CrossRef] [PubMed]
Mammoto, T.; Mammoto, A.; Suke Torisawa, Y.; Tat, T.; Gibbs, A.; Derda, R.; Mannix, R.; de Bruijn, M.; Yung, C.W.; Huh, D.; et al. Mechanochemical Control of Mesenchymal Condensation and Embryonic Tooth Organ Formation. Dev. Cell 2011, 21, 758–769. [CrossRef]
Ray, P.; Chapman, S.C. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling. PLoS ONE 2015, 10, e0134702. [CrossRef]
Petzold, J.; Gentleman, E. Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Front. Cell Dev. Biol. 2021, 9, 3112. [CrossRef]
Knothe Tate, M.L.; Falls, T.D.; McBride, S.H.; Atit, R.; Knothe, U.R. Mechanical Modulation of Osteochondroprogenitor Cell Fate. Int. J. Biochem. Cell Biol. 2008, 40, 2720. [CrossRef]
Mercker, M.; Hartmann, D.; Marciniak-Czochra, A. A mechanochemical model for embryonic pattern formation: Coupling tissue mechanics and morphogen expression. PLoS ONE 2013, 8, 1–6. [CrossRef]
Mercker, M.; Brinkmann, F.; Marciniak-Czochra, A.; Richter, T. Beyond Turing: Mechanochemical pattern formation in biological tissues. Biol. Direct 2016, 11, 22. [CrossRef]
Dillon, R.; Othmer, H.G. A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud. J. Theor. Biol. 1999. [CrossRef]
Hentschel, H.G.E.; Glimm, T.; Glazier, J.A.; Newman, S.A. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. B Biol. Sci. 2004, 271, 1713. [CrossRef] [PubMed]
Marcon, L.; Arqués, C.G.; Torres, M.S.; Sharpe, J. A computational clonal analysis of the developing mouse limb bud. PLoS Comput. Biol. 2011, 7. [CrossRef] [PubMed]
Popławski, N.J.; Swat, M.; Scott Gens, J.; Glazier, J.A. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. Phys. A Stat. Mech. Its Appl. 2007, 373, 521–532. [CrossRef]
Chaturvedi, R.; Huang, C.; Kazmierczak, B.; Schneider, T.; Izaguirre, J.; Glimm, T.; Hentschel, H.; Glazier, J.; Newman, S.; Alber, M. On multiscale approaches to three-dimensional modelling of morphogenesis. J. R. Soc. Interface 2005, 2, 237. [CrossRef]
Merks, R.M.; Glazier, J.A. A cell-centered approach to developmental biology. Phys. A Stat. Mech. Its Appl. 2005, 352, 113–130. [CrossRef]
Brodland, G.W. How computational models can help unlock biological systems. Semin. Cell Dev. Biol. 2015, 47-48, 62–73. [CrossRef]
Patterson, E.A.; Whelan, M.P. A framework to establish credibility of computational models in biology. Prog. Biophys. Mol. Biol. 2017, 129, 13–19. [CrossRef]
Pathmanathan, P.; Gray, R.A. Ensuring reliability of safety-critical clinical applications of computational cardiac models. Front. Physiol. 2013, 4, 358. [CrossRef]
Musuamba, F.T.; Skottheim Rusten, I.; Lesage, R.; Russo, G.; Bursi, R.; Emili, L.; Wangorsch, G.; Manolis, E.; Karlsson, K.E.; Kulesza, A.; et al. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building model credibility. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 804–825. [CrossRef]
American Society of Mechanical Engineers. Assessing Credibility of Computational Modeling through Verification and Validation: Application to Medical Devices-V&V40-2018; ASME: New York, NY, USA, 2018; p. 60.