[en] Bone healing process is a complicated phenomenon regulated by biochemical and mechanical signals. Experimental studies have shown that ultrasound (US) accelerates bone ossification and has a multiple influence on cell differentiation and angiogenesis. In a recent work of the authors, a bioregulatory model for providing bone-healing predictions was addressed, taking into account for the first time the salutary effect of US on the involved angiogenesis. In the present work, a mechanobioregulatory model of bone solidification under the US presence incorporating also the mechanical environment on the regeneration process, which is known to affect cellular processes, is presented. An iterative procedure is adopted, where the finite element method is employed to compute the mechanical stimuli at the linear elastic phases of the poroelastic callus region and a coupled system of partial differential equations to simulate the enhancement by the US cell angiogenesis process and thus the oxygen concentration in the fractured area. Numerical simulations with and without the presence of US that illustrate the influence of progenitor cells' origin in the healing pattern and the healing rate and simultaneously demonstrate the salutary effect of US on bone repair are presented and discussed.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Grivas, Konstantinos N; Department of Mechanical Engineering and Aeronautics, University of Patras, GR
Vavva, Maria G; Department of Mechanical Engineering and Aeronautics, University of Patras, GR
Polyzos, Demosthenes; Department of Mechanical Engineering and Aeronautics, University of Patras, GR
Carlier, Aurélie; Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C-PB 2419,
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C-PB 2419,
Van Oosterwyck, Hans; Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C-PB 2419,
Fotiadis, Dimitrios I; Department of Materials Science and Engineering, University of Ioannina, GR
Language :
English
Title :
Effect of ultrasound on bone fracture healing: A computational mechanobioregulatory model.
Alierta, J. A., Perez, M. A., and Garcia-Aznar, J. M. (2014). "An interface finite element model can be used to predict healing outcome of bone fractures," J. Mech. Behav. Biomed. Mater. 29, 328-338. 10.1016/j.jmbbm.2013.09.023
Ament, C., and Hofer, E. P. (2000). "A fuzzy logic model of fracture healing," J. Biomech. 33 (8), 961-968. 10.1016/S0021-9290(00)00049-X
Augat, P., Margevicius, K., Simon, J., Wolf, S., Suger, G., and Claes, L. (1998). "Local tissue properties in bone healing: Influence of size and stability of the osteotomy gap," J. Orthop. Res. 16 (4), 475-481. 10.1002/jor.1100160413
Bailon-Plaza, A., and Van der Meulen, C. H. (2001). "A mathematical framework to study the effects of growth factor influences on fracture healing," J. Theor. Biol. 212, 191-209. 10.1006/jtbi.2001.2372
Betts, D. C., and Müller, R. (2014). "Mechanical regulation of bone regeneration: Theories, models, and experiments," Front. Endocrin. 5, 1-14. 10.3389/fendo.2014.00211
Carlier, A., Geris, L., Gastel, N. V., Carmeliet, G., and Oosterwyck, H. V. (2015). "Oxygen as a critical determinant of bone fracture healing. A multiscale model," J. Theor. Biol. 365, 247-264. 10.1016/j.jtbi.2014.10.012
Carter, D. R., Beaupre, G. S., Giori, N. J., and Helms, J. A. (1998). "Mechanobiology of skeletal regeneration," Clin. Orthop. 355S, S41-S55. 10.1097/00003086-199810001-00006
Checa, S., and Prendergast, P. J. (2009). "A mechanobiological model for tissue differentiation that includes angiogenesis: A lattice-based modeling approach," Ann. Biomed. Eng. 37 (1), 129-145. 10.1007/s10439-008-9594-9
Chen, G., Niemeyer, F., Wehner, T., Simon, U., Schuetz, M. A., Pearcy, M. J., and Claes, L. E. (2009). "Simulation of the nutrient supply in fracture healing," J. Biomech. 42, 2575-2583. 10.1016/j.jbiomech.2009.07.010
Cheung, W.-H., Chow, S. K.-H., Sun, M.-H., Qin, L., and Leung, K.-S. (2011). "Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing," Ultrasound Med. Biol. 37 (2), 231-238. 10.1016/j.ultrasmedbio.2010.11.016
Claes, L. E., and Heigele, C. A. (1999). "Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing," J. Biomech. 32, 255-266. 10.1016/S0021-9290(98)00153-5
Claes, L. E., Heigele, C. A., Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevicius, K. J., and Augat, P. (1998). "Effects of mechanical factors on the fracture healing process," Clin. Orthop. Rel. Res. 355S, S132-S147. 10.1097/00003086-199810001-00015
Claes, L., and Willie, B. (2008). "The enhancement of bone regeneration by ultrasound," Progr. Biophys. Mol. Biol. 93, 384-398.
de Albornoz, P. M., Khanna, A., Longo, U. G., Forriol, F., and Maffulli, N. (2011). "The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing," British Med. Bull. 100, 39-57. 10.1093/bmb/ldr006
Drosse, I., Volkmer, E., Seitz, S., Seitz, H., Penzkofer, R., Zahn, K., Matis, U., Mutschler, W., Augat, P., and Schieker, M. (2008). "Validation of a femoral critical size defect model for orthotopic evaluation of bone healing: A biomechanical, veterinary and trauma surgical perspective," Tissue Eng. Part C 14, 79-88. 10.1089/tec.2007.0234
Garcia-Aznar, J. M., Kuiper, J. H., Gomez-Benito, M. J., Doblare, M., and Richardson, J. B. (2007). "Computational simulation of fracture healing: Influence of interfragmentary movement on the callus growth," J. Biomech. 40 (7), 1467-1476. 10.1016/j.jbiomech.2006.06.013
Geris, L., Gerisch, A., and Schugart, R. (2010a). "Mathematical modeling in wound healing, bone regeneration and tissue engineering," Acta Biotheor. 58, 355-367. 10.1007/s10441-010-9112-y
Geris, L., Schugart, R., and Van Oosterwyck, H. (2010b). "In silico design of treatment strategies in wound healing and bone fracture healing," Philos. Trans. Ser. A 368, 2683-2706. 10.1098/rsta.2010.0056
Geris, L., Vander Sloten, J., and Van Oosterwyck, H. (2008). "Angiogenesis in bone fracture healing: A bioregulatory model," J. Theor. Biol. 251 (1), 137-158. 10.1016/j.jtbi.2007.11.008
Ghiasi, M. S., Chen, J., Vaziri, A., Rodriguez, E. K., and Nazarian, A. (2017). "Bone fracture healing in mechanobiological modeling: A review of principles and methods," Bone Rep. 6, 87-100. 10.1016/j.bonr.2017.03.002
Gomez-Benito, M. J., Garcla-Aznar, J. M., Kuiper, J. H., and Doblare, M. (2005). "Influence of fracture gap size on the pattern of long bone healing: A computational study," J. Theor. Biol. 235, 105-119. 10.1016/j.jtbi.2004.12.023
Goodship, A. E., Cunningham, J. L., and Kenwright, J. (1998). "Strain rate and timing of stimulation in mechanical modulation of fracture healing," Clin. Orthop. Rel. Res. 355S, S105-S115. 10.1097/00003086-199810001-00012
Goodship, A. E., and Kenwright, J. (1985). "The influence of induced micromovement upon the healing of experimental tibial fractures," J. Bone Joint Surg. 67B, 650-655. 10.1302/0301-620X.67B4.4030869
Harrison, L. J., Cunningham, J. L., Stromberg, L., and Goodship, A. E. (2003). "Controlled induction of a pseudarthrosis: A study using a rodent model," J. Orthop. Trauma 17, 11-21. 10.1097/00005131-200301000-00003
Heckman, J. D., Ryaby, J. P., McCabe, J., Frey, J. J., and Kilcoyne, R. F. (1994). "Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound," J. Bone Joint Surg. Am. 76, 26-34. 10.2106/00004623-199401000-00004
Hosokawa, A. (2013). "Numerical simulations of change in trabecular structure due to bone remodeling under ultrasound propagation," J. Mech. Med. Biol. 13 (1), 1350003. 10.1142/S0219519413500036
Isaksson, H., Prantner, V., and Jurvelin, J. S. (2011a). "AGE related variation in BMD and trabecular architecture differs between the proximal femur and calcaneus in men," in ASME 2011 Summer Bioengineering Conference, Parts A and B, pp. 1079-1080.
Isaksson, H., Rakha, A., Andersson, R., Fredriksson, H., Olsson, J., and Man, P. (2011b). "Rye kernel breakfast increases satiety in the afternoon-An effect of food structure," Nutrition J. 10 (1), 10-31. 10.1186/1475-2891-10-31
Kenwright, J., and Gardner, T. (1998). "Mechanical influences on tibial fracture healing," Clin. Orthop. Rel. Res. S355, S179-S190. 10.1097/00003086-199810001-00019
Kristiansen, T. K., Ryaby, J. P., McCabe, J., Frey, J. J., and Roe, L. R. (1997). "Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double blind, placebo-controlled study," J. Bone Joint Surg. Am. 79, 961-973. 10.2106/00004623-199707000-00002
Kumagai, K., Takeuchi, R., Ishikawa, H., Yamaguchi, Y., Fujisawa, T., Kuniya, T., Takagawa, S., Muschler, G. F., and Saito, T. (2012). "Low-intensity pulsed ultrasound accelerates fracture healing by stimulation of recruitment of both local and circulating osteogenic progenitors," J. Orthopaedic Res. 30 (9), 1-6. 10.1002/jor.22103
Lacroix, D., Prendergast, P. J., Li, G., and Marsh, D. (2002). "Biomechanical model to simulate tissue differentiation and bone regeneration: Application to fracture healing," Med. Biol. Eng. Com. 40, 14-21. 10.1007/BF02347690
Leighton, R., Watson, J. T., Giannoudis, P., Papakostidis, C., Harrison, A., and Grant Steen, R. (2017). "Healing of fracture non-unions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis," Injury, Int. J. Care Injured 48, 1339-1347. 10.1016/j.injury.2017.05.016
Li, L., Yang, Z., Zhang, H., Chen, W., Chen, M., and Zhu, Z. (2012). "Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes," Biochem. Biophys. Res. Commun. 418, 296-300. 10.1016/j.bbrc.2012.01.014
OReilly, A., Hankenson, K. D., and Kelly, D. J. (2016). "A computational model to explore the role of angiogenic impairment on endochondral ossification during fracture healing," Biomech. Model. Mechanobiol. 15 (5), 1-16. 10.1007/s10237-016-0759-4
Pauwels, F. (1941). "Grundri einer biomechanik der frakturheilung "("Basic biomechanics of fracture healing"), Biomech. Locomotor Apparatus 34, 375-407.
Pauwels, F. (1960). Gesammelte Abhandlungen zur Funktionellen Anatomie des Bewegungsapparates (Biomechanics of the Locomotor Apparatus) (Springer-Verlag, New York).
Peiffer, V., Gerisch, A., Vandepitte, D., Van, O. H., and Geris, L. (2011). "A hybrid bioregulatory model of angiogenesis during bone fracture healing," Biomech. Model. Mechanobiol. 10, 383-395. 10.1007/s10237-010-0241-7
Perez, M. A., and Prendergast, P. J. (2007). "Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation," J. Biomech. 40, 2244-2253. 10.1016/j.jbiomech.2006.10.020
Pivonka, P., and Dunstan, C. R. (2012). "Role of mathematical modeling in bone fracture healing," Bone Rep. 1, 221.
Prendergast, P. J. (1997). "Finite element models in tissue mechanics and orthopaedic implants design," Clin. Biomech. 12, 343-366. 10.1016/S0268-0033(97)00018-1
Protopappas, V., Vavva, M., Fotiadis, D., and Malizos, K. (2008). "Ultrasonic monitoring of bone fracture healing," IEEE Trans. Ultras., Ferroelec., Freq. Control 55, 1243-1255. 10.1109/TUFFC.2008.787
Qin, Y.-X., Kaplan, T., Saldanha, A., and Rubin, C. (2003). "Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity," J. Biomech. 36, 1427-1437. 10.1016/S0021-9290(03)00127-1
Shefelbine, S. J., Augat, P., Claes, L., and Simon, U. (2005). "Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic," J. Biomech. 38, 2440-2450. 10.1016/j.jbiomech.2004.10.019
Tolli, H., Kujala, S., Jamsa, T., and Jalovaara, P. (2011). "Reindeer bone extract can heal the critical-size rat femur defect," Int. Orthop. 35, 615-622. 10.1007/s00264-010-1034-4
Vavva, M. G., Grivas, K. N., Aurélie Carlier, A., Polyzos, D., Geris, L., Van Oosterwyck, H., and Fotiadis, D. I. (2018). "Effect of ultrasound on bone fracture healing: A computational bioregulatory model," Comput. Biol. Med. 100, 74-85. 10.1016/j.compbiomed.2018.06.024
Vetter, A., Witt, F., Sander, O., Duda, G. N., and Weinkamer, R. (2012). "The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules," Biomech. Model Mechanobiol. 11 (1-2), 147-160. 10.1007/s10237-011-0299-x
Vogelin, E., Jones, N. F., Huang, J. I., Brekke, J. H., and Lieberman, J. R. (2005). "Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein," J. Bone Joint Surg.-Am. 87A, 1323-1331. 10.2106/00004623-200506000-00019
Wang, M., Yang, N., and Wang, X. (2017). "A review of computational models of bone fracture healing," Med. Biol. Eng. Comput. 55, 1895-1914. 10.1007/s11517-017-1701-3
Wilson, C. J., Schütz, M. A., and Epari, D. R. (2017). "Computational simulation of bone fracture healing under inverse dynamisation," Biomech. Model Mechanobiol. 16, 5-14. 10.1007/s10237-016-0798-x
Xu, C., Harris, J. M., and Quan, Y. (2006). "Estimating flow properties of porous media with a model for dynamic diffusion," Geoph. Dep., New Orleans, Annual Meeting, pp. 1831-1835.