Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs).
[en] Mesenchymal stromal cells (MSCs) are characterized by a regulatory phenotype and respond promptly to the environmental signals modulating their secretory activity. An appropriate preconditioning may induce MSCs to release secretomes with an enhanced regenerative potential. However, it fails to take into account that secretomes are composed by both soluble factors and extracellular vesicles (EVs), whose functions could be altered differently by the preconditioning approach. Here we demonstrate that the MSC secretome is strongly modulated by the simultaneous stimulation with hypoxia and pro-inflammatory cytokines, used to mimic the harsh environment present at the site of injury. We observed that the environmental variations strongly influenced the angiogenic potential of the different secretome fractions. Upon inflammation, the pro-angiogenic capacity of the soluble component of the MSC secretome was strongly inhibited, regardless of the oxygen level, while the EV-encapsulated component was not significantly affected by the inflammatory stimuli. These effects were accompanied by the modulation of the secreted proteins. On one hand, inflammation-activated MSCs release proteins mainly involved in the interaction with innate immune cells and in tissue remodeling/repair; on the other hand, when MSCs are not exposed to an inflamed environment, they respond to the different oxygen levels modulating the expression of proteins involved in the angiogenic process. The cargo content (in terms of miRNAs) of the corresponding EV fractions was less sensitive to the influence of the external stimuli. Our findings suggest that the therapeutic efficacy of MSC-based therapies could be enhanced by selecting the appropriate preconditioning approach and carefully discriminating its effects on the different secretome components.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Gorgun, Cansu; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy,
Balbi, Carolina; Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation,
Santamaria, Sara; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
Cortese, Katia; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
Malatesta, Paolo; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy,
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium,
Quarto, Rodolfo; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy,
Tasso, Roberta; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy,
Language :
English
Title :
Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs).
Eleuteri, S., Fierabracci, A., Insights into the secretome of mesenchymal stem cells and its potential applications. Int. J. Mol. Sci., 20, 2019, 4597, 10.3390/ijms20184597.
Hu, C., Li, L., Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell Mol. Med. 22 (2018), 1428–1442, 10.1111/jcmm.13492.
A, S., V, O., T, N., M, J., Wc, C., Preconditioning of human mesenchymal stem cells to enhance their regulation of the immune response. Stem Cell. Int., 2016, 10.1155/2016/3924858.
Noronha Nc, N.D.C., Mizukami, A., Caliári-Oliveira, C., Cominal, J.G., Rocha, J.L.M., Covas, D.T., Swiech, K., Malmegrim, K.C.R., Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther., 10, 2019, 10.1186/s13287-019-1224-y.
Hong, W.X., Hu, M.S., Esquivel, M., Liang, G.Y., Rennert, R.C., McArdle, A., Paik, K.J., Duscher, D., Gurtner, G.C., Lorenz, H.P., Longaker, M.T., The role of hypoxia-inducible factor in wound healing. Adv. Wound Care 3 (2014), 390–399, 10.1089/wound.2013.0520.
Ruthenborg, R.J., Ban, J.J., Wazir, A., Takeda, N., Kim, J.W., Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1. Mol. Cell. 37 (2014), 637–643, 10.14348/molcells.2014.0150.
MacLeod, A.S., Mansbridge, J.N., The innate immune system in acute and chronic wounds. Adv. Wound Care 5 (2016), 65–78, 10.1089/wound.2014.0608.
Fan, X.L., Zhang, Y., Li, X., Fu, Q.L., Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell. Mol. Life Sci. 77 (2020), 2771–2794, 10.1007/s00018-020-03454-6.
Gianni-Barrera, R., Di Maggio, N., Melly, L., Burger, M.G., Mujagic, E., Gürke, L., Schaefer, D.J., Banfi, A., Therapeutic vascularization in regenerative medicine, stem cells transl. Med 9 (2020), 433–444, 10.1002/sctm.19-0319.
Kwon, H.M., Hur, S.M., Park, K.Y., Kim, C.K., Kim, Y.M., Kim, H.S., Shin, H.C., Won, M.H., Ha, K.S., Kwon, Y.G., Lee, D.H., Kim, Y.M., Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vasc. Pharmacol. 63 (2014), 19–28, 10.1016/j.vph.2014.06.004.
Marfy-Smith, S.J., Clarkin, C.E., Are mesenchymal stem cells so bloody great after all?. Stem Cells Transl. Med. 6 (2017), 3–6, 10.5966/sctm.2016-0026.
Liu, L., Gao, J., Yuan, Y., Chang, Q., Liao, Y., Lu, F., Hypoxia preconditioned human adipose derived mesenchymal stem cells enhance angiogenic potential via secretion of increased VEGF and bFGF. Cell Biol. Int. 37 (2013), 551–560, 10.1002/cbin.10097.
Maffioli, E., Nonnis, S., Angioni, R., Santagata, F., Calì, B., Zanotti, L., Negri, A., Viola, A., Tedeschi, G., Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. J. Proteomics. 166 (2017), 115–126, 10.1016/j.jprot.2017.07.012.
Angioni, R., Liboni, C., Herkenne, S., Sánchez-Rodríguez, R., Borile, G., Marcuzzi, E., Calì, B., Muraca, M., Viola, A., CD73+ extracellular vesicles inhibit angiogenesis through adenosine A2B receptor signalling. J. Extracell. Vesicles, 9, 2020, 10.1080/20013078.2020.1757900.
Lo Sicco, C., Reverberi, D., Balbi, C., Ulivi, V., Principi, E., Pascucci, L., Becherini, P., Bosco, M.C., Varesio, L., Franzin, C., Pozzobon, M., Cancedda, R., Tasso, R., Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl. Med. 6 (2017), 1018–1028, 10.1002/sctm.16-0363.
Van Deun, J., Mestdagh, P., Agostinis, P., Akay, Ö., Anand, S., Anckaert, J., Martinez, Z.A., Baetens, T., Beghein, E., Bertier, L., Berx, G., Boere, J., Boukouris, S., Bremer, M., Buschmann, D., Byrd, J.B., Casert, C., Cheng, L., Cmoch, A., Daveloose, D., De Smedt, E., Demirsoy, S., Depoorter, V., Dhondt, B., Driedonks, T.A.P., Dudek, A., Elsharawy, A., Floris, I., Foers, A.D., Gärtner, K., Garg, A.D., Geeurickx, E., Gettemans, J., Ghazavi, F., Giebel, B., Kormelink, T.G., Hancock, G., Helsmoortel, H., Hill, A.F., Hyenne, V., Kalra, H., Kim, D., Kowal, J., Kraemer, S., Leidinger, P., Leonelli, C., Liang, Y., Lippens, L., Liu, S., Lo Cicero, A., Martin, S., Mathivanan, S., Mathiyalagan, P., Matusek, T., Milani, G., Monguió-Tortajada, M., Mus, L.M., Muth, D.C., Németh, A., Nolte-’T Hoen, E.N.M., O'Driscoll, L., Palmulli, R., Pfaffl, M.W., Primdal-Bengtson, B., Romano, E., Rousseau, Q., Sahoo, S., Sampaio, N., Samuel, M., Scicluna, B., Soen, B., Steels, A., Swinnen, J.V., Takatalo, M., Thaminy, S., Théry, C., Tulkens, J., Van Audenhove, I., Van Der Grein, S., Van Goethem, A., Van Herwijnen, M.J., Van Niel, G., Van Roy, N., Van Vliet, A.R., Vandamme, N., Vanhauwaert, S., Vergauwen, G., Verweij, F., Wallaert, A., Wauben, M., Witwer, K.W., Zonneveld, M.I., De Wever, O., Vandesompele, J., Hendrix, A., EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods, 14, 2017, 10.1038/nmeth.4185.
Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J.P., Primdal-Bengtson, B., Dingli, F., Loew, D., Tkach, M., Théry, C., Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. U. S. A 113 (2016), E968–E977, 10.1073/pnas.1521230113.
Gorgun, C., Reverberi, D., Rotta, G., Villa, F., Quarto, R., Tasso, R., Isolation and flow cytometry characterization of extracellular-vesicle subpopulations derived from human mesenchymal stromal cells. Curr. Protoc. Stem Cell Biol., 48, 2019, e76, 10.1002/cpsc.76.
Song, W., Fhu, C.W., Ang, K.H., Liu, C.H., Johari, N.A.B., Lio, D., Abraham, S., Hong, W., Moss, S.E., Greenwood, J., Wang, X., The fetal mouse metatarsal bone explant as a model of angiogenesis. Nat. Protoc. 10 (2015), 1459–1473, 10.1038/nprot.2015.097.
Ritchie, M., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies, vol. 43, 2015, Nucleic Acids Research, Oxford Academic, e47 https://doi: 10.1093/nar/gkv007.
Robinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 (2010), 139–140 https://doi: 10.1093/bioinformatics/btp616.
Law, C.W., Chen, Y., Shi, W., Smyth, G.K., Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, 2014, R29, 10.1186/gb-2014-15-2-r29.
Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., Xu, J., Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res. Ther. 9 (2018), 1–9, 10.1186/s13287-018-1069-9.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J., Horwitz, E.M., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 (2006), 315–317, 10.1080/14653240600855905.
Mitchell, R., Mellows, B., Sheard, J., Antonioli, M., Kretz, O., Chambers, D., Zeuner, M.-T., Tomkins, J.E., Denecke, B., Musante, L., Joch, B., Debacq-Chainiaux, F., Holthofer, H., Ray, S., Huber, T.B., Dengjel, J., De Coppi, P., Widera, D., Patel, K., Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res. Ther., 10, 2019, 116, 10.1186/s13287-019-1213-1.
Zijlstra, A., Di Vizio, D., Size matters in nanoscale communication. Nat. Cell Biol. 20 (2018), 228–230, 10.1038/s41556-018-0049-8.
Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., Ayre, D.C., Bach, J.M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N.N., Baxter, A.A., Bebawy, M., Beckham, C., Bedina Zavec, A., Benmoussa, A., Berardi, A.C., Bergese, P., Bielska, E., Blenkiron, C., Bobis-Wozowicz, S., Boilard, E., Boireau, W., Bongiovanni, A., Borràs, F.E., Bosch, S., Boulanger, C.M., Breakefield, X., Breglio, A.M., Brennan, M., Brigstock, D.R., Brisson, A., Broekman, M.L.D., Bromberg, J.F., Bryl-Górecka, P., Buch, S., Buck, A.H., Burger, D., Busatto, S., Buschmann, D., Bussolati, B., Buzás, E.I., Byrd, J.B., Camussi, G., Carter, D.R.F., Caruso, S., Chamley, L.W., Chang, Y.T., Chaudhuri, A.D., Chen, C., Chen, S., Cheng, L., Chin, A.R., Clayton, A., Clerici, S.P., Cocks, A., Cocucci, E., Coffey, R.J., Cordeiro-da-Silva, A., Couch, Y., Coumans, F.A.W., Coyle, B., Crescitelli, R., Criado, M.F., D'Souza-Schorey, C., Das, S., de Candia, P., De Santana, E.F., De Wever, O., del Portillo, H.A., Demaret, T., Deville, S., Devitt, A., Dhondt, B., Di Vizio, D., Dieterich, L.C., Dolo, V., Dominguez Rubio, A.P., Dominici, M., Dourado, M.R., Driedonks, T.A.P., Duarte, F.V., Duncan, H.M., Eichenberger, R.M., Ekström, K., EL Andaloussi, S., Elie-Caille, C., Erdbrügger, U., Falcón-Pérez, J.M., Fatima, F., Fish, J.E., Flores-Bellver, M., Försönits, A., Frelet-Barrand, A., Fricke, F., Fuhrmann, G., Gabrielsson, S., Gámez-Valero, A., Gardiner, C., Gärtner, K., Gaudin, R., Gho, Y.S., Giebel, B., Gilbert, C., Gimona, M., Giusti, I., Goberdhan, D.C.I., Görgens, A., Gorski, S.M., Greening, D.W., Gross, J.C., Gualerzi, A., Gupta, G.N., Gustafson, D., Handberg, A., Haraszti, R.A., Harrison, P., Hegyesi, H., Hendrix, A., Hill, A.F., Hochberg, F.H., Hoffmann, K.F., Holder, B., Holthofer, H., Hosseinkhani, B., Hu, G., Huang, Y., Huber, V., Hunt, S., Ibrahim, A.G.E., Ikezu, T., Inal, J.M., Isin, M., Ivanova, A., Jackson, H.K., Jacobsen, S., Jay, S.M., Jayachandran, M., Jenster, G., Jiang, L., Johnson, S.M., Jones, J.C., Jong, A., Jovanovic-Talisman, T., Jung, S., Kalluri, R., ichi Kano, S., Kaur, S., Kawamura, Y., Keller, E.T., Khamari, D., Khomyakova, E., Khvorova, A., Kierulf, P., Kim, K.P., Kislinger, T., Klingeborn, M., Klinke, D.J., Kornek, M., Kosanović, M.M., Kovács, Á.F., Krämer-Albers, E.M., Krasemann, S., Krause, M., Kurochkin, I.V., Kusuma, G.D., Kuypers, S., Laitinen, S., Langevin, S.M., Languino, L.R., Lannigan, J., Lässer, C., Laurent, L.C., Lavieu, G., Lázaro-Ibáñez, E., Le Lay, S., Lee, M.S., Lee, Y.X.F., Lemos, D.S., Lenassi, M., Leszczynska, A., Li, I.T.S., Liao, K., Libregts, S.F., Ligeti, E., Lim, R., Lim, S.K., Linē, A., Linnemannstöns, K., Llorente, A., Lombard, C.A., Lorenowicz, M.J., Lörincz, Á.M., Lötvall, J., Lovett, J., Lowry, M.C., Loyer, X., Lu, Q., Lukomska, B., Lunavat, T.R., Maas, S.L.N., Malhi, H., Marcilla, A., Mariani, J., Mariscal, J., Martens-Uzunova, E.S., Martin-Jaular, L., Martinez, M.C., Martins, V.R., Mathieu, M., Mathivanan, S., Maugeri, M., McGinnis, L.K., McVey, M.J., Meckes, D.G., Meehan, K.L., Mertens, I., Minciacchi, V.R., Möller, A., Møller Jørgensen, M., Morales-Kastresana, A., Morhayim, J., Mullier, F., Muraca, M., Musante, L., Mussack, V., Muth, D.C., Myburgh, K.H., Najrana, T., Nawaz, M., Nazarenko, I., Nejsum, P., Neri, C., Neri, T., Nieuwland, R., Nimrichter, L., Nolan, J.P., Nolte-’t Hoen, E.N.M., Noren Hooten, N., O'Driscoll, L., O'Grady, T., O'Loghlen, A., Ochiya, T., Olivier, M., Ortiz, A., Ortiz, L.A., Osteikoetxea, X., Ostegaard, O., Ostrowski, M., Park, J., Pegtel, D.M., Peinado, H., Perut, F., Pfaffl, M.W., Phinney, D.G., Pieters, B.C.H., Pink, R.C., Pisetsky, D.S., Pogge von Strandmann, E., Polakovicova, I., Poon, I.K.H., Powell, B.H., Prada, I., Pulliam, L., Quesenberry, P., Radeghieri, A., Raffai, R.L., Raimondo, S., Rak, J., Ramirez, M.I., Raposo, G., Rayyan, M.S., Regev-Rudzki, N., Ricklefs, F.L., Robbins, P.D., Roberts, D.D., Rodrigues, S.C., Rohde, E., Rome, S., Rouschop, K.M.A., Rughetti, A., Russell, A.E., Saá, P., Sahoo, S., Salas-Huenuleo, E., Sánchez, C., Saugstad, J.A., Saul, M.J., Schiffelers, R.M., Schneider, R., Schøyen, T.H., Scott, A., Shahaj, E., Sharma, S., Shatnyeva, O., Shekari, F., Shelke, G.V., Shetty, A.K., Shiba, K., Siljander, P.R.M., Silva, A.M., Skowronek, A., Snyder, O.L., Soares, R.P., Sódar, B.W., Soekmadji, C., Sotillo, J., Stahl, P.D., Stoorvogel, W., Stott, S.L., Strasser, E.F., Swift, S., Tahara, H., Tewari, M., Timms, K., Tiwari, S., Tixeira, R., Tkach, M., Toh, W.S., Tomasini, R., Torrecilhas, A.C., Tosar, J.P., Toxavidis, V., Urbanelli, L., Vader, P., van Balkom, B.W.M., van der Grein, S.G., Van Deun, J., van Herwijnen, M.J.C., Van Keuren-Jensen, K., van Niel, G., van Royen, M.E., van Wijnen, A.J., Vasconcelos, M.H., Vechetti, I.J., Veit, T.D., Vella, L.J., Velot, É., Verweij, F.J., Vestad, B., Viñas, J.L., Visnovitz, T., Vukman, K.V., Wahlgren, J., Watson, D.C., Wauben, M.H.M., Weaver, A., Webber, J.P., Weber, V., Wehman, A.M., Weiss, D.J., Welsh, J.A., Wendt, S., Wheelock, A.M., Wiener, Z., Witte, L., Wolfram, J., Xagorari, A., Xander, P., Xu, J., Yan, X., Yáñez-Mó, M., Yin, H., Yuana, Y., Zappulli, V., Zarubova, J., Žėkas, V., ye Zhang, J., Zhao, Z., Zheng, L., Zheutlin, A.R., Zickler, A.M., Zimmermann, P., Zivkovic, A.M., Zocco, D., Zuba-Surma, E.K., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 7, 2018, 10.1080/20013078.2018.1535750.
Mann, A., Niekisch, K., Schirmacher, P., Blessing, M., Granulocyte-macrophage colony-stimulating factor is essential for normal wound healing. J. Invest. Dermatol. Symp. Proc. 11 (2006), 87–92, 10.1038/sj.jidsymp.5650013.
Wood, S., Jayaraman, V., Huelsmann, E.J., Bonish, B., Burgad, D., Sivaramakrishnan, G., Qin, S., DiPietro, L.A., Zloza, A., Zhang, C., Shafikhani, S.H., Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PloS One, 9, 2014, e91574, 10.1371/journal.pone.0091574.
Dao, D.T., Anez-Bustillos, L., Adam, R.M., Puder, M., Bielenberg, D.R., Heparin-binding epidermal growth factor–like growth factor as a critical mediator of tissue repair and regeneration. Am. J. Pathol. 188 (2018), 2446–2456, 10.1016/j.ajpath.2018.07.016.
Corbel, M., Boichot, E., Lagente, V., Role of gelatinases MMP-2 and MMP-9 in tissue remodeling following acute lung injury. Braz. J. Med. Biol. Res. 33 (2000), 749–754, 10.1590/S0100-879X2000000700004.
López-Novoa, J.M., Bernabeu, C., The physiological role of endoglin in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 299 (2010), 959–974, 10.1152/ajpheart.01251.2009.
Shibuya, M., Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes and Cancer 2 (2011), 1097–1105, 10.1177/1947601911423031.
Stepanova, V., Jayaraman, P.S., Zaitsev, S.V., Lebedeva, T., Bdeir, K., Kershaw, R., Holman, K.R., Parfyonova, Y.V., Semina, E.V., Beloglazova, I.B., Tkachuk, V.A., Cines, D.B., Urokinase-type plasminogen activator (upa) promotes angiogenesis by attenuating proline-rich homeodomain protein (prh) transcription factor activity and de-repressing vascular endothelial growth factor (vegf) receptor expression. J. Biol. Chem. 291 (2016), 15029–15045, 10.1074/jbc.M115.678490.
Turchinovich, A., Drapkina, O., Tonevitsky, A., Transcriptome of extracellular vesicles: state-of-the-art. Front. Immunol., 10, 2019, 202, 10.3389/fimmu.2019.00202.
O'Brien, K., Breyne, K., Ughetto, S., Laurent, L.C., Breakefield, X.O., RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol., 2020, 1–22, 10.1038/s41580-020-0251-y.
Chen, X., Liang, H., Zhang, J., Zen, K., Zhang, C.Y., Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22 (2012), 125–132, 10.1016/j.tcb.2011.12.001.
Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., Lötvall, J.O., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9 (2007), 654–659, 10.1038/ncb1596.
Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., Ochiya, T., Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285 (2010), 17442–17452, 10.1074/jbc.M110.107821.
Ti, D., Hao, H., Fu, X., Han, W., Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci. China Life Sci. 59 (2016), 1305–1312, 10.1007/s11427-016-0240-4.
Hamanishi, J., Mandai, M., Matsumura, N., Baba, T., Yamaguchi, K., Fujii, S., Konishi, I., Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cell. 28 (2010), 164–173, 10.1002/stem.256.
Bartosh, T.J., Ylöstalo, J.H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R.H., Choi, H., Prockop, D.J., Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. U. S. A 107 (2010), 13724–13729, 10.1073/pnas.1008117107.
Follin, B., Juhl, M., Cohen, S., Perdersen, A.E., Kastrup, J., Ekblond, A., Increased paracrine immunomodulatory potential of mesenchymal stromal cells in three-dimensional culture. Tissue Eng. B Rev. 22 (2016), 322–329, 10.1089/ten.teb.2015.0532.
Cui, X., Wang, H., Guo, H., Wang, C., Ao, H., Liu, X., Tan, Y.Z., Transplantation of mesenchymal stem cells preconditioned with diazoxide, a mitochondrial ATP-sensitive potassium channel opener, promotes repair of myocardial infarction in rats. Tohoku J. Exp. Med. 220 (2010), 139–147, 10.1620/tjem.220.139.
Pessina, A., Coccè, V., Pascucci, L., Bonomi, A., Cavicchini, L., Sisto, F., Ferrari, M., Ciusani, E., Crovace, A., Falchetti, M.L., Zicari, S., Caruso, A., Navone, S., Marfia, G., Benetti, A., Ceccarelli, P., Parati, E., Alessandri, G., Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br. J. Haematol. 160 (2013), 766–778, 10.1111/bjh.12196.
K, M., X, W., S, D., R, O., Ad, E., Bj, G., Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells, cardiovasc. Res. 78 (2008), 376–384, 10.1093/CVR.
Prasanna, S.J., Gopalakrishnan, D., Shankar, S.R., Vasandan, A.B., Pro-inflammatory cytokines, IFNγ and TNFα, influence immune properties of human bone marrow and wharton jelly mesenchymal stem cells differentially. PloS One, 5, 2010, e9016, 10.1371/journal.pone.0009016.
Leroux, L., Descamps, B., Tojais, N.F., Séguy, B., Oses, P., Moreau, C., Daret, D., Ivanovic, Z., Boiron, J.M., Lamazière, J.M.D., Dufourcq, P., Couffinhal, T., Duplàa, C., Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a wnt4-dependent pathway. Mol. Ther. 18 (2010), 1545–1552, 10.1038/mt.2010.108.
Ray, A., Cytokines and their role in Health and disease: a brief overview. MOJ Immunol, 4, 2016, 10.15406/moji.2016.04.00121.
Heo, S.C., Jeon, E.S., Lee, I.H., Kim, H.S., Kim, M.B., Kim, J.H., Tumor necrosis factor-α-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J. Invest. Dermatol. 131 (2011), 1559–1567, 10.1038/jid.2011.64.
Zanotti, L., Angioni, R., Calì, B., Soldani, C., Ploia, C., Moalli, F., Gargesha, M., D'Amico, G., Elliman, S., Tedeschi, G., Maffioli, E., Negri, A., Zacchigna, S., Sarukhan, A., Stein, J.V., Viola, A., Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia 30 (2016), 1143–1154, 10.1038/leu.2016.33.
Rodríguez, D., Morrison, C.J., Overall, C.M., Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta Mol. Cell Res. 1803 (2010), 39–54, 10.1016/j.bbamcr.2009.09.015.
Schäfer, R., Spohn, G., Baer, P.C., Mesenchymal stem/stromal cells in regenerative medicine: can preconditioning strategies improve therapeutic efficacy?. Transfus. Med. Hemotherapy 43 (2016), 256–267, 10.1159/000447458.
Bader, A.M., Klose, K., Bieback, K., Korinth, D., Schneider, M., Seifert, M., Choi, Y.-H., Kurtz, A., Falk, V., Stamm, C., Hypoxic preconditioning increases survival and pro-angiogenic capacity of human cord blood mesenchymal stromal cells in vitro. PloS One, 10, 2015, e0138477, 10.1371/journal.pone.0138477.
Kinoshita, T., Yip, K.W., Spence, T., Liu, F.F., MicroRNAs in extracellular vesicles: potential cancer biomarkers. J. Hum. Genet. 62 (2017), 67–74, 10.1038/jhg.2016.87.
Lindoso, R.S., Collino, F., Bruno, S., Araujo, D.S., Sant'Anna, J.F., Tetta, C., Provero, P., Quesenberry, P.J., Vieyra, A., Einicker-Lamas, M., Camussi, G., Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury. Stem Cell. Dev. 23 (2014), 1809–1819, 10.1089/scd.2013.0618.
Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., Mi, S., Exosome and exosomal microRNA: trafficking, sorting, and function. Dev. Reprod. Biol. 13 (2015), 17–24, 10.1016/j.gpb.2015.02.001.
Song, Y., Dou, H., Li, X., Zhao, X., Li, Y., Liu, D., Ji, J., Liu, F., Ding, L., Ni, Y., Hou, Y., Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cell. 35 (2017), 1208–1221, 10.1002/STEM.2564@10.1002/(ISSN)2157-6580.