Bone Morphogenetic Protein 2; Animals; Bone Regeneration; Periosteum; Sheep; Stem Cells; Tissue Scaffolds; Biologically exhausted defect; Bone Morphogenetic Protein; Large animal model; Periosteum-derived cells
Abstract :
[en] Regenerative cell-based implants using periosteum-derived stem cells were developed for the treatment of large 3 cm fresh and 4.5 centimeter biological compromised bone gaps in a tibial sheep model and compared with an acellular ceramic-collagen void filler. It was hypothesized that the latter is insufficient to heal large skeletal defects due to reduced endogenous biological potency. To this purpose a comparison was made between the ceramic dicalciumphosphate scaffold (CopiOs®) as such, the same ceramic coated with clinical grade Bone Morphogenetic Protein 2 and 6 (BMP) only or a BMP coated cell-seeded combination product. These implants were evaluated in 2 sheep models, a fresh 3 cm critical size tibial defect and a 4.5 cm biologically exhausted tibial defect. For the groups in which growth factors were applied, BMP-6 was chosen at a dose of 344 μg for 3 cm and 1.500 μg or 3.800 μg for 4.5 cm defects. An additional group in the 4.5 cm defect was tested using BMP-2 in a dose of 1.500 μg. For all the cell based implants autologous periosteum-derived cells were used which were cultured in monolayer during 6 weeks. For the fresh defect 408 million cells and for the biologically exhausted tibial defect 612 million cells were drop-seeded on the BMP coated scaffolds. Bone healing was studied during 16 weeks postimplantation, using standard radiographs. While fresh defects responded to all treatments, regardless the use of cells, the biologically hampered defects responded in half of the cases and only if the BMP-cell combination product was used, supporting the concept that cell-based therapies may become attractive in treating defects with a compromised biological status.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Lammens, Johan; Department of Orthopaedic Surgery, University Hospitals Leuven, Herestraat 49,
Maréchal, Marina; Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat
Delport, Hendrik; Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat
Oppermann, Hermann; Genera Research, Svetonedeljska cesta 2, 10436 Kalinovica, Sveta Nedelja,
Vukicevic, Slobodan; Laboratory for Mineralized Tissues, Center for Translational and Clinical
Luyten, Frank P; Prometheus, Division of Skeletal Tissue Engineering of the KU Leuven, Herestraat
Language :
English
Title :
A cell-based combination product for the repair of large bone defects.
Ogink, P.T., Teunissen, F.R., Massier, J.R., Raskin, K.A., Schwab, J.H., Lozano-Calderon, S.A., Allograft reconstruction of the humerus: complications and revision surgery. J. Surg. Oncol. 119:3 (2019), 329–335.
Sohn, H.S., Oh, J.K., Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res, 23, 2019, 9.
Tosounidis, T.H., Giannoudis, P.V., Biological facet of segmental bone loss reconstruction. J. Orthop. Trauma 31:Suppl. 5 (2017), S27–S31.
Mauffrey, C., Barlow, B.T., Smith, W., Management of segmental bone defects. J Am Acad Orthop Surg 23 (2015), 143–153.
Trounson, A., Thakar, R.G., Lomax, G., Gibbon, D., Clinical trials for stem cell therapies. BMC Med., 9, 2011, 52.
Lopez-Ruiz, E., Jiménez, G., de Cienfuegos, A., Antich, C., Sabata, R., Marchal, J.A., Galvez-Martin, P., Advances of hyaluronic acid in stem cell therapy and tissue engineering, including current clinical trials. Eur Cell Mater 37 (2019), 186–213.
Ho-Shui-Ling, A., Bolander, J., Rustom, L.E., Johnson, A.W., Luyten, F.P., Picart, C., Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 180 (2018), 143–162.
Palombella, S., Lopa, S., Gianola, S., Zagra, L., Moretti, M., Lovati, A.B., Bone marrow-derived cell therapies to heal long-bone nonunions: a systemic review and meta-analysis - which is the best available treatment. Stem Cells Int, 2019 Dec 27, 3715964, 10.1155/2019/3715964. eCollection 2019.
Wang, W., Yeung, K.W.K., Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2:4 (2017), 224–247.
Sui, B.D., Hu, C.H., Liu, A.Q., Zheng, C.X., Xuan, K., Jin, Y., Stem cell-based bone regeneration in diseased microenvironments: challenges and solutions. Biomaterials 196 (2019), 18–30.
De Bari, C., Dell'Accio, F., Vanlauwe, J., Eyckmans, J., Khan, I.L., Archer, C.W., Jones, E.A., McGonagle, D., Mitsiadis, T.A., Pitzalis, C., Luyten, F.P., Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheumatism 54:4 (2006), 1209–1221.
Roberts, S., van Gastel, N., Carmeliet, G., Luyten, F.P., Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70 (2015), 10–18.
Bolander, J., Ji, W., Leijten, J., Moreira Teixeira, L., Bloemen, V., Lambrechts, D., Chaklade, M., Luyten, F.P., Healing of a large long-bone defect through serum-free in vitro priming of human periosteum-derived cells. Stem Cell Reports 8 (2017), 758–772.
Roberts, S.J., Geris, L., Kerckhofs, G., Desmet, E., Schrooten, J., Luyten, F.P., The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32 (2011), 4393–4405.
Lammens, J., Maréchal, M., Geris, L., Van der Aa, J., Van Hauwermeiren, H., Luyten, F.P., Delport, H., Warning about the use of critical-size defects for the translational study of bone repair: analysis of a sheep tibial model. Tissue Eng Part C Methods 23:11 (2017), 694–699.
Masquelet, A.C., Begue, T., The concept of induced membrane for reconstruction of long bone defects. Orthop. Clin. N. Am. 41 (2010), 27–37.
Viateau, V., Guillemin, G., Calando, Y., Logeart, D., Oudina, K., Sedel, L., Hannouche, D., Bousson, V., Petite, H., Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet. Surg. 35 (2006), 445–452.
Threadgold, LT., The Ultrastructure of the Animal Cell. second edition. Pergamom Press Limited. 1967, Oxford, England, 32–39 (ISBN 0-08-018-957-1).
Eyckmans, J., Roberts, S.J., Schrooten, J., Luyten, F.P., Clinical relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signaling. J. Cell. Mol. Med. 14:6B (2010), 1845–1856.
Le Nihouannen, Damien, Daculsi, Guy, Saffarzadeh, Afchine, Gauthier, Olivier, Delplace, Séverine, Pilet, Paul, Layrolle, Pierre, Ectopic Bone Formation by Microporous Calcium Phosphate Ceramic Particles in Sheep Muscles. Bone 36:6 (2005), 1086–1093 10,1016.
Ji, W., Kerckhofs, G., Geeroms, C., Marechal, M., Geris, L., Luyten, F.P., Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs. Acta Biomater. 80 (2018 Oct 15), 97–107.
Vukicevic, S., Stokovic, Pecina M., Is ceramics an appropriate bone morphogenetic protein delivery system for clinical use?. Int. Orthop. 43 (2019), 1275–1276.
Grgurevic, L., Opperman, H., Pecin, M., Erjavec, I., Capak, H., Paul, M., Karlovic, S., Kufner, V., Lipar, M., Spoljar, J.B., Bordukalo-Niksic, T., Maticic, D., Peric, M., Windhager, R., Sampath, T.K., Vukicevic, S., Recombinant Human Bone Morphogenetic Protein 6 delivered within autologous blood clot coagulum restores critical size segmental defects of ulna in rabbits. JBMR Plus, 3(5), 2019, e10085.
Vukicevic, S., Oppermann, H., Verbanac, D., Jankolija, M., Popek, I., Curak, J., Brkljacic, J., Pauk, M., Erjavec, I., Francetic, I., Dumic-Cule, I., Jelic, M., Durdevic, D., Vlahovic, T., Novak, R., Kufner, V., Niksic, T.B., Kozlovic, M., Tomisic, Z.B., Bubic-Splojar, J., Bastalic, I., Vikic-Topic, S., Peric, M., Pecina, M., Grgurevic, L., The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int. Orthop. 38 (2014), 635–647.
Bolander, J., Ji, W., Geris, L., Bloemen, V., Chai, Y.C., Schrooten, J., Luyten, F.P., The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells. Eur Cells Mater 31 (2016), 11–25.
Bez, M., Sheyn, D., Tawackoli, W., Avalos, P., Shapiro, G., Giaconi, J.C., Da, X., David, S.B., Gavrity, J., Awad, H.A., Bae, H.W., Ley, E.J., Kremen, T.J., Gazit, Z., Ferrara, K.W., Pelled, G., Gazit, D., In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Sci Transl Med., 9(390), 2017, eaal3128.
Mizrahi, O., Sheyn, D., Tawackoli, W., Kallai, I., Oh, A., Su, S., Da, X., Zarrini, P., Cook-Wiens, G., Gazit, D., Gazit, Z., BMP-6 is more efficient in bone formation than BMP2 when overexpressed in mesenchymal stem cells. Gene Ther. 20 (2013), 370–377.
Simmonds, M.C., Brown, J.V.E., Heirs, M.K., Higgins, J.P.T., Mannion, R.J., Rodgers, M.A., Stewart, L.A., Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion. A meta-analysis of individual-participant data. Ann. Intern. Med. 158 (2013), 877–889.
Fu, R., Selph, S., McDonagh, M., Peterson, K., Tiwari, A., Chou, R., Helfand, M., Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion. A systemic review and meta-analysis. Ann. Intern. Med. 157 (2013), 890–902.
Woo, et al. Adverse events after recombinant human BMP2 in nonspinal orthopaedic procedures. Clin. Orthop. Relat. Res. 471 (2013), 1707–1711.
Nakamura, M., Nakamichi, Y., Nakamura, H., Udagawa, Osteoclastogenesis and bone resorption. Nihon Rinsho. Japanese J Clin Med 67:5 (2009), 889–896.
Hunziker, E.B., Jovanovic, J., Horner, A., Keel, M.J.B., Lippuner, K., Shintani, N., Optimisation of BMP-2 dosage for the osseointegration of porous titanium implants in an ovine model. Eur Cells Mater 32 (2016), 241–256.
Vukicevic, S., Grgurevic, L., Erjavec, I., Pecin, M., Bordukalo-Niksic, T., Stokovic, N., Lipar, M., Capak, H., Maticic, D., Windhager, R., Sampath, T.K., Gupta, M., Autologous blood coagulum is a physiological carrier for BMP6 to induce new bone formation and promote posterolateral lumbar spine fusion in rabbits. J. Tissue Eng. Regen. Med. 14 (2020), 147–159.
Chiari, C., Grgurevic, L., Bordukalo-Niksic, T., Oppermann, H., Valentinitsch, A., Recombinant human BMP6 applied within Autologous Blood Coagulum accelerates bone healing: Randomized controlled trial in High Tibial Osteotomy patients. J Bone Miner Res, June 2020, 10.1016/j.bone.2005.02.017.
Grgurevic, L., Erjavec, I., Dumic-Cule, I., Bordukalo-Niksic, T., Pauk, M., Trkulja, V., Maticic, D., Pecin, M., Lipar, M., Peric, M., Vukicevic, S., Osteogrow: a novel bone graft substitute for orthopedic reconstruction. Vukicevic, S., Sampath, T.K., (eds.) Bone Morphogenetic Proteins: Systems Biology Regulators PIR Series, 2017, Springer International Publishing, 215–228.
Aurégan, J.C., Begue, T., Induced membrane for treatment of critical sized bone defect: a review of experimental and clinical experiences. Int. Orthop. 38:9 (2014), 1971–1978.
Masquelet, A., Kanakaris, N.K., Obert, L., Stafford, P., Giannoudis, P.V., Bone repair using the Masquelet technique. J. Bone Joint Surg. Am. 101:11 (2019), 1024–1036.
Luangphakdy, V., Pluhar, G.E., Piuzzi, N.S., D'Alleyrand, J.C., Carlson, C.S., Bechtold, J.E., Forsberg, J., Muschler, G.F., The effect of surgical technique and spacer texture on bone regeneration: a caprine study using the Masquelet technique. Clin Orthop Rel Res 475:10 (2017), 2575–2585.
Giannoudis, P.V., Faour, O., Goff, T., Kanakaris, N., Dimitriou, R., Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42 (2011), 591–598.
Aho, O.-M., Lehenkari, P., Ristiniemi, J., Lehtonen, S., Risteli, J., Leskelä, H.-V., The mechanism of action of induced membranes in bone repair. J. Bone Joint Surg. 95 (2013), 597–604.
http://www.physics.csbsju.edu/stats/exact.
Raymond, M., Rousset, F., An exact test for population differentiation. Evolution 49:6 (1995), 1280–1283.
Stegen, S., Carmeliet, G., Hypoxia, hypoxia-inducible transcription factors and oxygen-sensing prolyl hydroxylases in bone development and homeostasis. Curr. Opin. Nephrol. Hypertens. 28 (2019), 328–335.
Stiers, P.J., Stegen, S., van Gastel, N., Van Looveren, R., Torrekens, S., Carmeliet, G., Inhibition of the oxygen sensor PHD2 enhances tissue-engineered endochondral bone formation. JBMR 34 (2019), 333–348.
Bolander, J., Herpelinck, T., Chaklader, M., Gklava, C., Geris, L., Luyten, F.P., Single-cell characterization and metabolic profiling of in vitro cultured human skeletal progenitors with enhanced in vivo bone forming capacity. Stem Cells Transl. Med. 9:3 (2020), 389–402.
Hofstetter, C.P., Hofer, A.S., Levi, A.D., Exploratory meta-analysis on dose-related efficacy and morbidity of bone morphogenetic protein in spinal arthrodesis surgery. J Neurosurg Spine 24 (2016), 457–475.
Bouyer, M., Guillot, R., Lavaud, J., Plettinx, C., Olivier, C., Curry, V., Boutonnat, J., Coll, J.L., Peyrin, F., Josserand, V., Bettega, G., Picart, C., Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials 104 (2016), 168–181.
Herberg, S., McDermott, A.M., Dang, P.N., Alt, D.S., Tang, R., Dawahare, J.H., Varghai, D., Shin, J.Y., McMillan, A., Dikina, A.D., He, F., Lee, Y.B., Cheng, Y., Umemori, K., Wong, P.C., Park, H., Boerckel, J.D., Alsberg, E., Combinatorial morphogenetic and mechanical cues to mimic bone development for defect repair. Sci Adv, 5(8), 2019, eaax2476.
Niemeyer, P., Schönberger, T.S., Hahn, J., Kasten, P., Fellenberg, J., Suedkamp, N., Mehlhorn, A.T., Milz, S., Pearce, S., Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia. Tissue Eng Part A 16 (2010), 33–43.
Lin, C.C., Lin, S.C., Chiang, C.C., Chang, M.C., Lee, O.K., Reconstruction of bone defect combined with massive loss of periosteum using injectable human mesenchymal stem cells in biocompatible ceramic scaffolds in a porcine animal model. Stem Cells Int, 2019, 2019 Nov 23, 6832952, 10.1155/2019/6832952. eCollection 2019.
Nilsson Hall, G., Mendes, L.F., Gklava, C., Geris, L., Luyten, F.P., Papantoniou, I., Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo bone healing. Advanced Science, 7(2), 2019 Dec 10, 1902295, 10.1002/advs.201902295 eCollection 2020 Jan.