[en] The development of alternatives for autologous bone grafts is a major focus of bone tissue engineering. To produce living bone-forming implants, skeletal stem and progenitor cells (SSPCs) are envisioned as key ingredients. SSPCs can be obtained from different tissues including bone marrow, adipose tissue, dental pulp, and periosteum. Human periosteum-derived cells (hPDCs) exhibit progenitor cell characteristics and have well-documented in vivo bone formation potency. Here, we have characterized and compared hPDCs derived from tibia with craniofacial hPDCs, from maxilla and mandible, respectively, each representing a potential source for cell-based tissue engineered implants for craniofacial applications. Maxilla and mandible-derived hPDCs display similar growth curves as tibial hPDCs, with equal trilineage differentiation potential toward chondrogenic, osteogenic, and adipogenic cells. These craniofacial hPDCs are positive for SSPC-markers CD73, CD164, and Podoplanin (PDPN), and negative for CD146, hematopoietic and endothelial lineage markers. Bulk RNA-sequencing identified genes that are differentially expressed between the three sources of hPDC. In particular, differential expression was found for genes of the HOX and DLX family, for SOX9 and genes involved in skeletal system development. The in vivo bone formation, 8 weeks after ectopic implantation in nude mice, was observed in constructs seeded with tibial and mandibular hPDCs. Taken together, we provide evidence that hPDCs show different profiles and properties according to their anatomical origin, and that craniofacial hPDCs are potential sources for cell-based bone tissue engineering strategies. The mandible-derived hPDCs display - both in vitro and in vivo - chondrogenic and osteogenic differentiation potential, which supports their future testing for use in craniofacial bone regeneration applications.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Groeneveldt, Lisanne C; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium. ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium. ; OMFS IMPATH Research Group, Department of Imaging and Pathology, KU Leuven, ; Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium. ; Department of Cell Biology, Erasmus University Medical Center, Rotterdam,
Herpelinck, Tim; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium. ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
Maréchal, Marina; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium. ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
Politis, Constantinus; OMFS IMPATH Research Group, Department of Imaging and Pathology, KU Leuven, ; Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
van IJcken, Wilfred F J; Department of Cell Biology, Erasmus University Medical Center, Rotterdam, ; Center for Biomics, Erasmus University Medical Center, Rotterdam, Netherlands.
Huylebroeck, Danny; Department of Cell Biology, Erasmus University Medical Center, Rotterdam, ; Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium. ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium. ; Biomechanics Section, KU Leuven, Leuven, Belgium.
Mulugeta, Eskeatnaf; Department of Cell Biology, Erasmus University Medical Center, Rotterdam,
Luyten, Frank P; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium. ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium. ; Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
Language :
English
Title :
The Bone-Forming Properties of Periosteum-Derived Cells Differ Between Harvest Sites.
Aghaloo T. L., Chaichanasakul T., Bezouglaia O., Kang B., Franco R., Dry S. M., et al. (2010). Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J. Dent. Res. 89 1293–1298. 10.1177/0022034510378427 20811069
Ambrosi T. H., Longaker M. T., Chan C. K. F., (2019). A revised perspective of skeletal stem cell biology. Front. Cell. Dev. Biol. 7:189. 10.3389/fcell.2019.00189 31572721
Anders S., Pyl P. T., Huber W., (2015). HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31 166–169. 10.1093/bioinformatics/btu638 25260700
Arrington E. D., Smith W. J., Chambers H. G., Bucknell A. L., Davino N. A., (1996). Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res. 329 300–309. 10.1097/00003086-199608000-00037 8769465
Bolander J., Herpelinck T., Chaklader M., Gklava C., Geris L., Luyten F. P., (2020). Single-cell characterization and metabolic profiling of in vitro cultured human skeletal progenitors with enhanced in vivo bone forming capacity. Stem Cells Transl. Med. 9 389–402. 10.1002/sctm.19-0151 31738481
Bolander J., Ji W., Geris L., Bloemen V., Chai Y. C., Schrooten J., et al. (2016). The combined mechanism of bone morphogenetic protein- and calcium phosphate-induced skeletal tissue formation by human periosteum derived cells. Eur. Cell Mater. 31 11–25. 10.22203/ecm.v031a02 26728496
Bolger A. M., Lohse M., Usadel B., (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 24695404
Brighton C. T., Hunt R. M., (1997). Early histologic and ultrastructural changes in microvessels of periosteal callus. J. Orthop. Trauma 11 244–253. 10.1097/00005131-199705000-00002 9258821
Cesario J. M., Landin Malt A., Deacon L. J., Sandberg M., Vogt D., Tang Z., et al. (2015). Lhx6 and Lhx8 promote palate development through negative regulation of a cell cycle inhibitor gene, p57Kip2. Hum. Mol. Genet. 24 5024–5039. 10.1093/hmg/ddv223 26071365
Chai Y. C., Roberts S. J., Desmet E., Kerckhofs G., van Gastel N., Geris L., et al. (2012). Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials 33 3127–3142. 10.1016/j.biomaterials.2012.01.015 22269651
Chan C. K. F., Gulati G. S., Sinha R., Tompkins J. V., Lopez M., Carter A. C., et al. (2018). Identification of the human skeletal stem cell. Cell 175 43–56.e21. 10.1016/j.cell.2018.07.029 30241615
Choi Y., Ballow D. J., Xin Y., Rajkovic A., (2008). Lim homeobox gene, lhx8, is essential for mouse oocyte differentiation and survival. Biol. Reprod. 79 442–449. 10.1095/biolreprod.108.069393 18509161
Colnot C., Zhang X., Knothe Tate M. L., (2012). Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J. Orthop. Res. 30 1869–1878. 10.1002/jor.22181 22778049
Couly G. F., Coltey P. M., Le Douarin N. M., (1993). The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117 409–429.
De Bari C., Dell’Accio F., Vanlauwe J., Eyckmans J., I Khan M., Archer C. W., et al. (2006). Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 54 1209–1221. 10.1002/art.21753 16575900
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8 315–317. 10.1080/14653240600855905 16923606
Duchamp de Lageneste O., Julien A., Abou-Khalil R., Frangi G., Carvalho C., Cagnard N., et al. (2018). Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun. 9:773. 10.1038/s41467-018-03124-z 29472541
Eyckmans J., Luyten F. P., (2006). Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng. 12 2203–2213. 10.1089/ten.2006.12.2203 16968161
Flandin P., Zhao Y., Vogt D., Jeong J., Long J., Potter G., et al. (2011). Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron 70 939–950. 10.1016/j.neuron.2011.04.020 21658586
Geris L., Papantoniou I., (2019). The third era of tissue engineering: reversing the innovation drivers. Tissue Eng. Part A 25 821–826. 10.1089/ten.TEA.2019.0064 30860432
Giannoni P., Scaglione S., Daga A., Ilengo C., Cilli M., Quarto R., (2010). Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng. Part A 16 489–499. 10.1089/ten.TEA.2009.0041 19712045
Green S. A., Simoes-Costa M., Bronner M. E., (2015). Evolution of vertebrates as viewed from the crest. Nature 520 474–482. 10.1038/nature14436 25903629
Guichet J. M., Braillon P., Bodenreider O., Lascombes P., (1998). Periosteum and bone marrow in bone lengthening: a DEXA quantitative evaluation in rabbits. Acta Orthop. Scand. 69 527–531. 10.3109/17453679808997792 9855238
Hagberg C. E., Falkevall A., Wang X., Larsson E., Huusko J., Nilsson I., et al. (2010). Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464 917–921. 10.1038/nature08945 20228789
Ji W., Kerckhofs G., Geeroms C., Marechal M., Geris L., Luyten F. P., (2018). Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs. Acta Biomater. 80 97–107. 10.1016/j.actbio.2018.09.046 30267882
Jung Y. K., Kim G. W., Park H. R., Lee E. J., Choi J. Y., Beier F., et al. (2013). Role of interleukin-10 in endochondral bone formation in mice: anabolic effect via the bone morphogenetic protein/Smad pathway. Arthritis Rheum. 65 3153–3164. 10.1002/art.38181 24022823
Kerckhofs G., Chai Y. C., Luyten F. P., Geris L., (2016). Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation. Acta Biomater. 35 330–340. 10.1016/j.actbio.2016.02.037 26925963
Kerckhofs G., Sainz J., Wevers M., Van de Putte T., Schrooten J., (2013). Contrast-enhanced nanofocus computed tomography images the cartilage subtissue architecture in three dimensions. Eur. Cell Mater. 25 179–189. 10.22203/ecm.v025a13 23389752
Kern S., Eichler H., Stoeve J., Klüter H., Bieback K., (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24 1294–1301. 10.1634/stemcells.2005-0342 16410387
Kim D., Langmead B., Salzberg S. L., (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12 357–360. 10.1038/nmeth.3317 25751142
Lammens J., Maréchal M., Delport H., Geris L., Oppermann H., Vukicevic S., et al. (2020). A cell-based combination product for the repair of large bone defects. Bone 138:115511. 10.1016/j.bone.2020.115511 32599225
Lee J. H., Hah Y. S., Cho H. Y., Kim J. H., Oh S. H., Park B. W., et al. (2014). Human umbilical cord blood-derived CD34-positive endothelial progenitor cells stimulate osteoblastic differentiation of cultured human periosteal-derived osteoblasts. Tissue Eng. Part A 20 940–953. 10.1089/ten.TEA.2013.0329 24168264
Lee J. M., Kim M. G., Byun J. H., Kim G. C., Ro J. H., Hwang D. S., et al. (2017). The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells. Maxillofac. Plast. Reconstr. Surg. 39:7. 10.1186/s40902-017-0104-6 28303237
Leijten J., Chai Y. C., Papantoniou I., Geris L., Schrooten J., Luyten F. P., (2015). Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Adv. Drug Deliv. Rev. 84 30–44. 10.1016/j.addr.2014.10.025 25451134
Leucht P., Kim J. B., Amasha R., James A. W., Girod S., Helms J. A., (2008). Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135 2845–2854. 10.1242/dev.023788 18653558
Li H., Marijanovic I., Kronenberg M. S., Erceg I., Stover M. L., Velonis D., et al. (2008). Expression and function of Dlx genes in the osteoblast lineage. Dev. Biol. 316 458–470. 10.1016/j.ydbio.2008.01.001 18280462
Liatsikos S. A., Grimbizis G. F., Georgiou I., Papadopoulos N., Lazaros L., Bontis J. N., et al. (2010). HOX A10 and HOX A11 mutation scan in congenital malformations of the female genital tract. Reprod. Biomed. Online 21 126–132. 10.1016/j.rbmo.2010.03.015 20457539
Lin X., Yang H., Wang L., Li W., Diao S., Du J., et al. (2019). AP2a enhanced the osteogenic differentiation of mesenchymal stem cells by inhibiting the formation of YAP/RUNX2 complex and BARX1 transcription. Cell Prolif. 52:e12522. 10.1111/cpr.12522 30443989
Lindhe J., Bressan E., Cecchinato D., Corrá E., Toia M., Liljenberg B., (2013). Bone tissue in different parts of the edentulous maxilla and mandible. Clin. Oral Implants Res. 24 372–377. 10.1111/clr.12064 23167917
Mattioli-Belmonte M., Teti G., Salvatore V., Focaroli S., Orciani M., Dicarlo M., et al. (2015). Stem cell origin differently affects bone tissue engineering strategies. Front. Physiol. 6:266. 10.3389/fphys.2015.00266 26441682
Meijer G. J., de Bruijn J. D., Koole R., van Blitterswijk C. A., (2008). Cell based bone tissue engineering in jaw defects. Biomaterials 29 3053–3061. 10.1016/j.biomaterials.2008.03.012 18433864
Meulemans D., Bronner-Fraser M., (2004). Gene-regulatory interactions in neural crest evolution and development. Dev. Cell 7 291–299. 10.1016/j.devcel.2004.08.007 15363405
Mimura S., Suga M., Okada K., Kinehara M., Nikawa H., Furue M. K., (2016). Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells. Int. J. Dev. Biol. 60 21–28. 10.1387/ijdb.160040mk 26934293
Mosmann T., (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 55–63. 10.1016/0022-1759(83)90303-4
Nakahara H., Goldberg V. M., Caplan A. I., (1991). Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res. 9 465–476. 10.1002/jor.1100090402 2045973
Noden D. M., (1982). “Patterns and organization of craniofacial skeletogenic mesenchyme: a perspective,” in Factors and Mechanisms Influencing Bone Growth, eds Dixon A. D., Sarnat B. G., (New York, NY: Alan R. Liss).
Owston H. E., Ganguly P., Tronci G., Russell S. J., Giannoudis P. V., Jones E. A., (2019). Colony formation, migratory, and differentiation characteristics of multipotential stromal cells (MSCs) from clinically accessible human periosteum compared to donor-matched bone marrow MSCs. Stem Cells Int. 2019:6074245. 10.1155/2019/6074245 31871468
Paine-Saunders S., Viviano B. L., Zupicich J., Skarnes W. C., Saunders S., (2000). glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev. Biol. 225 179–187. 10.1006/dbio.2000.9831 10964473
Park H. S., Lee Y. J., Jeong S. H., Kwon T. G., (2008). Density of the alveolar and basal bones of the maxilla and the mandible. Am. J. Orthod. Dentofacial Orthop. 133 30–37. 10.1016/j.ajodo.2006.01.044 18174068
Potier E., Ferreira E., Meunier A., Sedel L., Logeart-Avramoglou D., Petite H., (2007). Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 13 1325–1331. 10.1089/ten.2006.0325 17518749
Raines A. M., Magella B., Adam M., Potter S. S., (2015). Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC Dev. Biol. 15:28. 10.1186/s12861-015-0078-5 26186931
Risso D., Schwartz K., Sherlock G., Dudoit S., (2011). GC-content normalization for RNA-Seq data. BMC Bioinformatics 12:480. 10.1186/1471-2105-12-480 22177264
Roberts S. J., van Gastel N., Carmeliet G., Luyten F. P., (2015). Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 70 10–18. 10.1016/j.bone.2014.08.007 25193160
Robinson M. D., McCarthy D. J., Smyth G. K., (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 139–140. 10.1093/bioinformatics/btp616 19910308
Sacchetti B., Funari A., Remoli C., Giannicola G., Kogler G., Liedtke S., et al. (2016). No identical mesenchymal stem cells at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports 6 897–913. 10.1016/j.stemcr.2016.05.011 27304917
Salgado A. J., Coutinho O. P., Reis R. L., (2004). Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 4 743–765. 10.1002/mabi.200400026 15468269
Takimoto A., Kokubu C., Watanabe H., Sakuma T., Yamamoto T., Kondoh G., et al. (2019). Differential transactivation of the upstream aggrecan enhancer regulated by PAX1/9 depends on SOX9-driven transactivation. Sci. Rep. 9:4605. 10.1038/s41598-019-40810-4 30872687
Tribulo C., Aybar M. J., Nguyen V. H., Mullins M. C., Mayor R., (2003). Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130 6441–6452. 10.1242/dev.00878 14627721
Tsai M. S., Hwang S. M., Chen K. D., Lee Y. S., Hsu L. W., Chang Y. J., et al. (2007). Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 25 2511–2523. 10.1634/stemcells.2007-0023 17556597
van Gastel N., Torrekens S., Roberts S. J., Moermans K., Schrooten J., Carmeliet P., et al. (2012). Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 30 2460–2471. 10.1002/stem.1210 22911908
van Lochem E. G., van der Velden V. H., Wind H. K., te Marvelde J. G., Westerdaal N. A., van Dongen J. J., (2004). Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin. Cytom. 60 1–13. 10.1002/cyto.b.20008 15221864
Villanueva S., Glavic A., Ruiz P., Mayor R., (2002). Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev. Biol. 241 289–301. 10.1006/dbio.2001.0485 11784112
Wallin J., Wilting J., Koseki H., Fritsch R., Christ B., Balling R., (1994). The role of Pax-1 in axial skeleton development. Development 120 1109–1121.
Wang W., Huang D., Ren J., Li R., Feng Z., Guan C., et al. (2019). Optogenetic control of mesenchymal cell fate towards precise bone regeneration. Theranostics 9 8196–8205. 10.7150/thno.36455 31754390
Wang X., Zheng P., Huang G., Yang L., Zhou Z., (2018). Dipeptidyl peptidase-4(DPP-4) inhibitors: promising new agents for autoimmune diabetes. Clin. Exp. Med. 18 473–480. 10.1007/s10238-018-0519-0 30022375
Woo J., Miletich I., Kim B. M., Sharpe P. T., Shivdasani R. A., (2011). Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One 6:e22493. 10.1371/journal.pone.0022493 21799872
Ylönen R., Kyrönlahti T., Sund M., Ilves M., Lehenkari P., Tuukkanen J., et al. (2005). Type XIII collagen strongly affects bone formation in transgenic mice. J. Bone Miner Res. 20 1381–1393. 10.1359/JBMR.050319 16007336
Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A. H., Tanaseichuk O., et al. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10:1523. 10.1038/s41467-019-09234-6 30944313