[en] Tissue engineered constructs have the potential to respond to the unmet medical need of treating deep osteochondral defects. However, current tissue engineering strategies struggle in the attempt to create patterned constructs with biologically distinct functionality. In this work, a developmentally-inspired modular approach is proposed, whereby distinct cartilaginous organoids are used as living building blocks. First, a hierarchical construct was created, composed of three layers of cartilaginous tissue intermediates derived from human periosteum-derived cells: (i) early (SOX9), (ii) mature (COL2) and (iii) (pre)hypertrophic (IHH, COLX) phenotype. Subcutaneous implantation in nude mice generated a hybrid tissue containing one mineralized and one non-mineralized part. However, the non-mineralized part was represented by a collagen type I positive fibrocartilage-like tissue. To engineer a more stable articular cartilage part, iPSC-derived cartilage microtissues (SOX9, COL2; IHH neg) were generated. Subcutaneous implantation of assembled iPSC-derived cartilage microtissues resulted in a homogenous cartilaginous tissue positive for collagen type II but negative for osteocalcin. Finally, iPSC-derived cartilage microtissues in combination with the pre-hypertrophic cartilage organoids (IHH, COLX) could form dual tissues consisting of i) a cartilaginous safranin O positive and ii) a bony osteocalcin positive region upon subcutaneous implantation, corresponding to the pre-engineered zonal pattern. The assembly of functional building blocks, as presented in this work, opens possibilities for the production of complex tissue engineered implants by embedding zone-specific functionality through the use of pre-programmed living building blocks.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Hall, Gabriella Nilsson; Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat
Tam, Wai Long; Skeletal Biology and Engineering Research Center, Department of Development and
Andrikopoulos, Konstantinos S; Institute of Chemical Engineering Sciences, Foundation for Research and
Casas-Fraile, Leire; Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering
Voyiatzis, George A; Institute of Chemical Engineering Sciences, Foundation for Research and
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat
Luyten, Frank P; Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat
Papantoniou, Ioannis; Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat
Language :
English
Title :
Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo.
Gorbachova, T., Melenevsky, Y., Cohen, M., Cerniglia, B.W., Osteochondral lesions of the knee: differentiating the most common entities at MRI. Radiographics 38 (2018), 1478–1495, 10.1148/rg.2018180044.
Brown, T.D., Johnston, R.C., Saltzman, C.L., Marsh, J.L., Buckwalter, J.A., Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma, 2006, 10.1097/01.bot.0000246468.80635.ef.
Filardo, G., Andriolo, L., Soler, F., Berruto, M., Ferrua, P., Verdonk, P., Rongieras, F., Crawford, D.C., Treatment of unstable knee osteochondritis dissecans in the young adult: results and limitations of surgical strategies—the advantages of allografts to address an osteochondral challenge, Knee Surgery, Sport. Traumatol. Arthrosc. 27 (2019), 1726–1738, 10.1007/s00167-018-5316-5.
Pareek, A., Sanders, T.L., Wu, I.T., Larson, D.R., Saris, D.B.F., Krych, A.J., Incidence of symptomatic osteochondritis dissecans lesions of the knee: a population-based study in Olmsted County. Osteoarthritis Cartilage 25 (2017), 1663–1671, 10.1016/j.joca.2017.07.005.
Lories, R.J., Luyten, F.P., The bone-cartilage unit in osteoarthritis. Nat. Rev. Rheumatol. 7 (2011), 43–49, 10.1038/nrrheum.2010.197.
Ogura, T., Merkely, G., Bryant, T., Winalski, C.S., Minas, T., Autologous chondrocyte implantation “segmental-sandwich” technique for deep osteochondral defects in the knee: clinical outcomes and correlation with magnetic resonance imaging findings. Orthop. J. Sport. Med., 7, 2019, 10.1177/2325967119847173 232596711984717.
Lambers, K.T.A., Dahmen, J., Reilingh, M.L., van Bergen, C.J.A., Stufkens, S.A.S., Kerkhoffs, G.M.M.J., No superior surgical treatment for secondary osteochondral defects of the talus, Knee Surgery, Sport. Traumatol. Arthrosc. 26 (2018), 2158–2170, 10.1007/s00167-017-4629-0.
Visser, J., Gawlitta, D., Benders, K.E.M., Toma, S.M.H., Pouran, B., van Weeren, P.R., Dhert, W.J.A., Malda, J., Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials 37 (2015), 174–182, 10.1016/j.biomaterials.2014.10.020.
Diloksumpan, P., de Ruijter, M., Castilho, M., Gbureck, U., Vermonden, T., van Weeren, P.R., Malda, J., Levato, R., Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Biofabrication, 12, 2020, 025014, 10.1088/1758-5090/ab69d9.
Vindas Bolaños, R.A., Cokelaere, S.M., Estrada McDermott, J.M., Benders, K.E.M., Gbureck, U., Plomp, S.G.M., Weinans, H., Groll, J., van Weeren, P.R., Malda, J., The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthritis Cartilage 25 (2017), 413–420, 10.1016/j.joca.2016.08.005.
Stüdle, C., Vallmajó-Martín, Q., Haumer, A., Guerrero, J., Centola, M., Mehrkens, A., Schaefer, D.J., Ehrbar, M., Barbero, A., Martin, I., Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues. Biomaterials 171 (2018), 219–229, 10.1016/j.biomaterials.2018.04.025.
Stiers, P.J., Stegen, S., van Gastel, N., Van Looveren, R., Torrekens, S., Carmeliet, G., Inhibition of the oxygen sensor PHD2 enhances tissue-engineered endochondral bone formation. J. Bone Miner. Res. 34 (2019), 333–348, 10.1002/jbmr.3599.
Lang, A., Kirchner, M., Stefanowski, J., Durst, M., Weber, M.C., Pfeiffenberger, M., Damerau, A., Hauser, A.E., Hoff, P., Duda, G.N., Buttgereit, F., Schmidt-Bleek, K., Gaber, T., Collagen I-based scaffolds negatively impact fracture healing in a mouse-osteotomy-model although used routinely in research and clinical application. Acta Biomater. 86 (2019), 171–184, 10.1016/j.actbio.2018.12.043.
Katagiri, H., Mendes, L.F., Luyten, F.P., Reduction of BMP6-induced bone formation by calcium phosphate in wild-type compared with nude mice. J. Tissue Eng. Regen. Med. 13 (2019), 846–856, 10.1002/term.2837.
Lenas, P., Moos, M., Luyten, F.P., Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng. B Rev. 15 (2009), 381–394, 10.1089/ten.TEB.2008.0575.
Lenas, P., Luyten, F.P., An emerging paradigm in tissue engineering: from chemical engineering to developmental engineering for bioartificial tissue formation through a series of unit operations that simulate the in vivo successive developmental stages †. Ind. Eng. Chem. Res. 50 (2011), 482–522, 10.1021/ie100314b.
Scotti, C., Piccinini, E., Takizawa, H., Todorov, A., Bourgine, P., Papadimitropoulos, A., Barbero, A., Manz, M.G., Martin, I., Engineering of a functional bone organ through endochondral ossification. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 3997–4002, 10.1073/pnas.1220108110.
Nilsson Hall, G., Mendes, L.F., Gklava, C., Geris, L., Luyten, F.P., Papantoniou, I., Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Adv. Sci. 7 (2020), 1–16, 10.1002/advs.201902295.
Farrell, E., Both, S.K., Odörfer, K.I., Koevoet, W., Kops, N., O'Brien, F.J., De Jong, R.J.B., Verhaar, J.A., Cuijpers, V., Jansen, J., Erben, R.G., Van Osch, G.J.V.M., In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Muscoskel. Disord., 12, 2011, 31, 10.1186/1471-2474-12-31.
Decker, R.S., Articular cartilage and joint development from embryogenesis to adulthood. Semin. Cell Dev. Biol. 62 (2017), 50–56, 10.1016/j.semcdb.2016.10.005.
Mackie, E.J., Tatarczuch, L., Mirams, M., The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J. Endocrinol. 211 (2011), 109–121, 10.1530/JOE-11-0048.
Li, J., Luo, H., Wang, R., Lang, J., Zhu, S., Zhang, Z., Fang, J., Qu, K., Lin, Y., Long, H., Yao, Y., Tian, G., Wu, Q., Systematic reconstruction of molecular cascades regulating GP development using single-cell RNA-seq. Cell Rep. 15 (2016), 1467–1480, 10.1016/j.celrep.2016.04.043.
Ray, A., Singh, P.N.P., Sohaskey, M.L., Harland, R.M., Bandyopadhyay, A., Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Devenir 142 (2015), 1169–1179, 10.1242/dev.110940.
Mendes, L.F., Katagiri, H., Tam, W.L., Chai, Y.C., Geris, L., Roberts, S.J., Luyten, F.P., Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res. Ther. 9 (2018), 1–13, 10.1186/s13287-018-0787-3.
Critchley, S., Cunniffe, G., O'Reilly, A., Diaz-Payno, P., Schipani, R., McAlinden, A., Withers, D., Shin, J., Alsberg, E., Kelly, D.J., Regeneration of osteochondral defects using developmentally inspired cartilaginous templates. Tissue Eng. 25 (2019), 159–171, 10.1089/ten.tea.2018.0046.
Gadjanski, I., Vunjak-Novakovic, G., Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expet Opin. Biol. Ther. 15 (2015), 1583–1599, 10.1517/14712598.2015.1070825.
Shwartz, Y., Viukov, S., Krief, S., Zelzer, E., Joint development involves a continuous influx of gdf5-positive cells. Cell Rep. 15 (2016), 2577–2587, 10.1016/j.celrep.2016.05.055.
Kunisch, E., Knauf, A.K., Hesse, E., Freudenberg, U., Werner, C., Bothe, F., Diederichs, S., Richter, W., StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication, 11, 2019, 015001, 10.1088/1758-5090/aae75a.
Babur, B.K., Futrega, K., Lott, W.B., Klein, T.J., Cooper-White, J., Doran, M.R., High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue. Cell Tissue Res. 361 (2015), 755–768, 10.1007/s00441-015-2159-y.
Ouyang, L., Armstrong, J.P.K., Salmeron-Sanchez, M., Stevens, M.M., Assembling living building blocks to engineer complex tissues. Adv. Funct. Mater. 1909009 (2020), 1–22, 10.1002/adfm.201909009.
Bhumiratana, S., Eton, R.E., Oungoulian, S.R., Wan, L.Q., a Ateshian, G., Vunjak-Novakovic, G., Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 6940–6945, 10.1073/pnas.1324050111.
Mithoefer, K., Mcadams, T., Williams, R.J., Kreuz, P.C., Mandelbaum, B.R., Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am. J. Sports Med. 37 (2009), 2053–2063, 10.1177/0363546508328414.
Wakitani, S., Nawata, M., Tensho, K., Okabe, T., Machida, H., Ohgushi, H., Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J. Tissue Eng. Regen. Med. 1 (2007), 74–79, 10.1002/term.8.
McCarthy, H.S., Roberts, S., A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation. Osteoarthritis Cartilage 21 (2013), 2048–2057, 10.1016/j.joca.2013.10.004.
Craft, A.M., Rockel, J.S., Nartiss, Y., Kandel, R.A., Alman, B.A., Keller, G.M., Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33 (2015), 638–645, 10.1038/nbt.3210.
Yamashita, A., Morioka, M., Yahara, Y., Okada, M., Kobayashi, T., Kuriyama, S., Matsuda, S., Tsumaki, N., Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Reports 4 (2015), 404–418, 10.1016/j.stemcr.2015.01.016.
Yamashita, A., Tamamura, Y., Morioka, M., Karagiannis, P., Shima, N., Tsumaki, N., Considerations in hiPSC-derived cartilage for articular cartilage repair. Inflamm. Regen. 38 (2018), 1–7, 10.1186/s41232-018-0075-8.
Eyckmans, J., Roberts, S.J., Schrooten, J., Luyten, F.P., A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling. J. Cell Mol. Med. 14 (2010), 1845–1856, 10.1111/j.1582-4934.2009.00807.x.
Leijten, J., Moreira Teixeira, L.S., Bolander, J., Ji, W., Vanspauwen, B., Lammertyn, J., Schrooten, J., Luyten, F.P., Bioinspired seeding of biomaterials using three dimensional microtissues induces chondrogenic stem cell differentiation and cartilage formation under growth factor free conditions. Sci. Rep. 6 (2016), 1–12, 10.1038/srep36011.
Mendes, L.F., Tam, W.L., Chai, Y.C., Geris, L., Luyten, F.P., Roberts, S.J., Combinatorial analysis of growth factors reveals the contribution of bone morphogenetic proteins to chondrogenic differentiation of human periosteal cells. Tissue Eng. C Methods 22 (2016), 473–486, 10.1089/ten.tec.2015.0436.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 (2012), 671–675, 10.1038/nmeth.2089.
Deckers, T., Lambrechts, T., Viazzi, S., Hall, G.N., Papantoniou, I., Bloemen, V., Aerts, J.M., High-throughput image-based monitoring of cell aggregation and microspheroid formation. PloS One, 2018, 10.1371/journal.pone.0199092.
Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25 (2001), 402–408, 10.1006/meth.2001.1262.
Kerckhofs, G., Sainz, J., Marechal, M., Wevers, M., Van de Putte, T., Geris, L., Schrooten, J., Contrast-enhanced nanofocus X-ray computed tomography allows virtual three-dimensional histopathology and morphometric analysis of osteoarthritis in small animal models. Cartilage 5 (2013), 55–65, 10.1177/1947603513501175.
Fernando, W.A., Papantoniou, I., Mendes, L.F., Nilsson Hall, G., Bosmans, K., Tam, W.L., Teixeira, L.M., Moos, M., Geris, L., Luyten, F.P., Limb derived cells as a paradigm for engineering self-assembling skeletal tissues. J. Tissue Eng. Regen. Med, 2017, 1–14, 10.1002/term.2498.
Ruifrok, A.C., Johnston, D.A., Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23 (2001), 291–299.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., Fiji: an open-source platform for biological-image analysis. Nat. Methods, 2012, 10.1038/nmeth.2019.
Berg, S., Kutra, D., Kroeger, T., Straehle, C.N., Kausler, B.X., Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K., Cervantes, J.I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang, C., Koethe, U., Hamprecht, F.A., Kreshuk, A., Ilastik: interactive machine learning for (Bio)Image analysis. Nat. Methods 16 (2019), 1226–1232, 10.1038/s41592-019-0582-9.
Leijten, J.C.H., Emons, J., Sticht, C., Van Gool, S., Decker, E., Uitterlinden, A., Rappold, G., Hofman, A., Rivadeneira, F., Scherjon, S., Wit, J.M., Van Meurs, J., Van Blitterswijk, C.A., Karperien, M., Gremlin 1, frizzled-related protein, and dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum. 64 (2012), 3302–3312, 10.1002/art.34535.
Bergholt, M.S., St-Pierre, J.P., Offeddu, G.S., Parmar, P.A., Albro, M.B., Puetzer, J.L., Oyen, M.L., Stevens, M.M., Raman spectroscopy reveals new insights into the zonal organization of native and tissue-engineered articular cartilage. ACS Cent. Sci. 2 (2016), 885–895, 10.1021/acscentsci.6b00222.
Power, L.J., Fasolato, C., Barbero, A., Wendt, D.J., Wixmerten, A., Martin, I., Asnaghi, M.A., Sensing tissue engineered cartilage quality with Raman spectroscopy and statistical learning for the development of advanced characterization assays. Biosens. Bioelectron., 166, 2020, 112467, 10.1016/j.bios.2020.112467.
Bergholt, M.S., Albro, M.B., Stevens, M.M., Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy. Biomaterials 140 (2017), 128–137, 10.1016/j.biomaterials.2017.06.015.
Brézillon, S., Untereiner, V., Mohamed, H.T., Hodin, J., Chatron-Colliet, A., Maquart, F.X., Sockalingum, G.D., Probing glycosaminoglycan spectral signatures in live cells and their conditioned media by Raman microspectroscopy. Analyst 142 (2017), 1333–1341, 10.1039/c6an01951j.
Gamsjaeger, S., Mendelsohn, R., Boskey, A.L., Gourion-Arsiquaud, S., Klaushofer, K., Paschalis, E.P., Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr. Osteoporos. Rep. 12 (2014), 454–464, 10.1007/s11914-014-0238-8.
Ng, J.J., Wei, Y., Zhou, B., Bernhard, J., Robinson, S., Burapachaisri, A., Guo, X.E., Vunjak-Novakovic, G., Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage. Proc. Natl. Acad. Sci. U.S.A. 114 (2017), 2556–2561, 10.1073/pnas.1611771114.
Skylar-Scott, M.A., Uzel, S.G.M., Nam, L.L., Ahrens, J.H., Truby, R.L., Damaraju, S., Lewis, J.A., Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv., 5, 2019, eaaw2459, 10.1126/sciadv.aaw2459.
Occhetta, P., Pigeot, S., Rasponi, M., Dasen, B., Mehrkens, A., Ullrich, T., Kramer, I., Guth-Gundel, S., Barbero, A., Martin, I., Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proc. Natl. Acad. Sci. U.S.A. 115 (2018), 4625–4630, 10.1073/pnas.1720658115.
Ling, L., Ren, X., Cao, X., Hassan, A.B.M., Mah, S., Sathiyanathan, P., Smith, R.A.A., Tan, C.L.L., Eio, M., Samsonraj, R.M., van Wijnen, A.J., Raghunath, M., Nurcombe, V., Hui, J.H., Cool, S.M., Enhancing the efficacy of stem cell therapy with glycosaminoglycans. Stem Cell Reports 14 (2019), 1–17, 10.1016/j.stemcr.2019.12.003.
Castro-Viñuelas, R., Sanjurjo-Rodríguez, C., Piñeiro-Ramil, M., Hermida-Gómez, T., Fuentes-Boquete, I.M., de Toro-Santos, F.J., Blanco-García, F.J., Díaz-Prado, S.M., Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur. Cell. Mater. 36 (2018), 96–109, 10.22203/eCM.v036a08.
Diederichs, S., Klampfleuthner, F.A.M., Moradi, B., Richter, W., Chondral differentiation of induced pluripotent stem cells without progression into the endochondral pathway. Front. Cell Dev. Biol., 7, 2019, 270, 10.3389/fcell.2019.00270.
Li, Y., Li, L., Chen, Z.N., Gao, G., Yao, R., Sun, W., Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication, 9, 2017, 032001, 10.1088/1758-5090/aa7e9a.
Schnabel, M., Marlovits, S., Eckhoff, G., Fichtel, I., Gotzen, L., Vécsei, V., Schlegel, J., Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture, Osteoarthr. What Car? 10 (2002), 62–70, 10.1053/joca.2001.0482.
Luyten, F.P., Dell'Accio, F., De Bari, C., Skeletal tissue engineering: opportunities and challenges. Best Pract. Res. Clin. Rheumatol. 15 (2001), 759–769, 10.1053/berh.2001.0192.
Roughley, P.J., Mort, J.S., The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 1 (2014), 1–11, 10.1186/s40634-014-0008-7.
Goldring, S.R., Goldring, M.B., Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage bone crosstalk. Nat. Rev. Rheumatol. 12 (2016), 632–644, 10.1038/nrrheum.2016.148.
Hoemann, C.D., Lafantaisie-Favreau, C.H., Lascau-Coman, V., Chen, G., Guzmán-Morales, J., The cartilage-bone interface. J. Knee Surg., 25, 2012, 10.1055/s-0032-1319782 085–098.
Da, H., Jia, S.J., Meng, G.L., Cheng, J.H., Zhou, W., Xiong, Z., Mu, Y.J., Liu, J., The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PloS One, 8, 2013, e54838, 10.1371/journal.pone.0054838.
Lee, W.D., Hurtig, M.B., Pilliar, R.M., Stanford, W.L., Kandel, R.A., Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells. Osteoarthritis Cartilage 23 (2015), 1307–1315, 10.1016/j.joca.2015.04.010.
Mellor, L.F., Nordberg, R.C., Huebner, P., Mohiti-Asli, M., Taylor, M.A., Efird, W., Oxford, J.T., Spang, J.T., Shirwaiker, R.A., Loboa, E.G., Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. J. Biomed. Mater. Res. B Appl. Biomater. 108 (2020), 2017–2030, 10.1002/jbm.b.34542.
Kiviranta, I., Jurvelin, J., Tammi, M., SääMäunen, A.-M., Helminen, H.J., Weight bearing controls glycosaminoglycan concentration and articualr cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum. 30 (1987), 801–809, 10.1002/art.1780300710.
Ng, J., Wei, Y., Zhou, B., Bhumiratana, S., Burapachaisri, A., Guo, E., Vunjak-Novakovic, G., Ectopic implantation of juvenile osteochondral tissues recapitulates endochondral ossification. J. Tissue Eng. Regen. Med. 12 (2018), 468–478, 10.1002/term.2500.
Koike, H., Iwasawa, K., Ouchi, R., Maezawa, M., Giesbrecht, K., Saiki, N., Ferguson, A., Kimura, M., Thompson, W.L., Wells, J.M., Zorn, A.M., Takebe, T., Modelling human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary. Nature 574 (2019), 112–116, 10.1038/s41586-019-1598-0.
Samal, P., van Blitterswijk, C., Truckenmüller, R., Giselbrecht, S., Grow with the flow: when morphogenesis meets microfluidics. Adv. Mater., 31, 2019, 10.1002/adma.201805764.
De Peppo, G.M., Marcos-Campos, I., Kahler, D.J., Alsalman, D., Shang, L., Vunjak-Novakovic, G., Marolt, D., Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 8680–8685, 10.1073/pnas.1301190110.
Ayan, B., Heo, D.N., Zhang, Z., Dey, M., Povilianskas, A., Drapaca, C., Ozbolat, I.T., Aspiration-assisted bioprinting for precise positioning of biologics. Sci. Adv. 6 (2020), 1–17, 10.1126/sciadv.aaw5111.
Daly, A.C., Kelly, D.J., Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197 (2019), 194–206, 10.1016/j.biomaterials.2018.12.028.
Mekhileri, N.V., Lim, K.S., Brown, G.C.J., Mutreja, I., Schon, B.S., Hooper, G.J., Woodfield, T.B.F., Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication, 10, 2018, 024103, 10.1088/1758-5090/aa9ef1.
Di Luca, A., Lorenzo-Moldero, I., Mota, C., Lepedda, A., Auhl, D., Van Blitterswijk, C., Moroni, L., Tuning cell differentiation into a 3D scaffold presenting a pore shape gradient for osteochondral regeneration. Adv. Healthc. Mater. 5 (2016), 1753–1763, 10.1002/adhm.201600083.