[en] Dentoalveolar tissue engineering is an emerging yet challenging field, considering the lack of suitable materials and difficulty to produce patient-specific hydrogel scaffolds. The present paper aims to produce a 3D printable and tuneable biomaterial by copolymerizing a synthesized water-soluble chitosan derivative called maleic anhydride grafted chitosan (MA-C) with gelatin using genipin, a natural crosslinking agent. Development and testing of this material for 3D printing, degradation, and swelling demonstrated the ability to fabricate scaffolds with controlled physical properties based on pre-determined designs. The MA-C-gelatin copolymer demonstrated excellent biocompatibility, which was verified by analyzing the viability, growth and proliferation of human dental pulp stem cells seeded on MA-C-gelatin constructs through live/dead, alamar blue and DNA quantification assays. Based on the present findings, the proposed material might be a suitable candidate for dentoalveolar tissue engineering, while further research is required to achieve this goal.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Salar Amoli, Mehdi; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium, OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium. Electronic address: mehdi.salaramoli@kuleuven.be
Anand, Resmi; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium, Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium, Inter University Centre for Biomedical Research and Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kottayam, Kerala 686009, India. Electronic address: resmi.anand@list.lu
EzEldeen, Mostafa; OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium, Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium. Electronic address: mostafa.ezeldeen@kuleuven.be
Amorim, Paulo Alexandre; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium, Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium. Electronic address: pauloalexandre.amorim@kuleuven.be
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit
Jacobs, Reinhilde; OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden. Electronic address: reinhilde.jacobs@kuleuven.be
Bloemen, Veerle; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium, Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium. Electronic address: veerle.bloemen@kuleuven.be
Language :
English
Title :
The development of a 3D printable chitosan-based copolymer with tunable properties for dentoalveolar regeneration.
ERC - European Research Council KU Leuven - Katholieke Universiteit Leuven
Funding text :
Supported by the Research Council of KU Leuven grant number ( C24/18/068 ), and the European Research Council (ERC) under the European Union 's Horizon 2020 research and innovation programme ( ERC CoG 772418 ). RA acknowledges DST INSPIRE Faculty award ( DST/INSPIRE/04/2016/000482 ).
Abou Neel, E.A., Chrzanowski, W., Salih, V.M., Kim, H.-W., Knowles, J.C., Tissue engineering in dentistry. Journal of Dentistry 42:8 (2014), 915–928, 10.1016/J.JDENT.2014.05.008.
Ahmadi, F., Oveisi, Z., Samani, S.M., Amoozgar, Z., Chitosan based hydrogels: Characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences 10:1 (2015), 1–16.
Amorim, P.A., d’Ávila, M.A., Anand, R., Moldenaers, P., Van Puyvelde, P., Bloemen, V., Insights on shear rheology of inks for extrusion-based 3D bioprinting. Bioprinting, 22, 2021, e00129, 10.1016/j.bprint.2021.e00129.
Amsden, B.G., Sukarto, A., Knight, D.K., Shapka, S.N., Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules 8:12 (2007), 3758–3766, 10.1021/bm700691e.
Benbettaïeb, N., Kurek, M., Bornaz, S., Debeaufort, F., Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions. Journal of the Science of Food and Agriculture 94:12 (2014), 2409–2419, 10.1002/jsfa.6570.
Butler, M.F., Ng, Y.-F., Pudney, P.D.A., Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. Journal of Polymer Science Part A: Polymer Chemistry 41:24 (2003), 3941–3953, 10.1002/pola.10960.
Cui, L., Jia, J., Guo, Y., Liu, Y., Zhu, P., Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate Polymers 99 (2014), 31–38, 10.1016/j.carbpol.2013.08.048.
Davidenko, N., Schuster, C.F., Bax, D.V., Raynal, N., Farndale, R.W., Best, S.M., Cameron, R.E., Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomaterialia 25 (2015), 131–142, 10.1016/j.actbio.2015.07.034.
Demirtaş, T.T., Irmak, G., Gümüşderelioğlu, M., A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication, 9(3), 2017, 35003, 10.1088/1758-5090/aa7b1d.
Dimida, S., Barca, A., Cancelli, N., De Benedictis, V., Raucci, M.G., Demitri, C., Effects of genipin concentration on cross-linked chitosan scaffolds for bone tissue engineering: Structural characterization and evidence of biocompatibility features. International Journal of Polymer Science, 2017, 2017, 8410750, 10.1155/2017/8410750.
EzEldeen, M., Wyatt, J., Al-Rimawi, A., Coucke, W., Shaheen, E., Lambrichts, I., Jacobs, R., Use of CBCT guidance for tooth autotransplantation in children. Journal of Dental Research 98:4 (2019), 406–413, 10.1177/0022034519828701.
Ferry, J.D., Viscoelastic properties of polymers / [by] John D. Ferry. Retrieved from http://www.loc.gov/catdir/enhancements/fy0608/76093301-t.html, 1970.
Fischetti, T., Celikkin, N., Contessi Negrini, N., Farè, S., Swieszkowski, W., Tripolyphosphate-crosslinked chitosan/gelatin biocomposite ink for 3D printing of uniaxial scaffolds. Retrieved from Frontiers in Bioengineering and Biotechnology, 8, 2020, 400 https://www.frontiersin.org/article/10.3389/fbioe.2020.00400.
Fu, Y., Xiao, C., A facile physical approach to make chitosan soluble in acid-free water. International Journal of Biological Macromolecules 103 (2017), 575–580, 10.1016/j.ijbiomac.2017.05.066.
Gallorini, M., Zara, S., Ricci, A., Mangano, F.G., Cataldi, A., Mangano, C., The open cell form of 3D-printed titanium improves osteconductive properties and adhesion behavior of dental pulp stem cells. Materials, 14, 2021, 10.3390/ma14185308.
Ganji, F., Vasheghani Farahani, S., Vasheghani-Farahani, E., Theoretical description of hydrogel swelling: A review. Iranian Polymer Journal 19 (2010), 375–398.
Gautam, S., Chou, C.-F., Dinda, A.K., Potdar, P.D., Mishra, N.C., Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. Journal of Materials Science 49:3 (2014), 1076–1089, 10.1007/s10853-013-7785-8.
Gopal Reddi, M.R., Gomathi, T., Saranya, M., Sudha, P.N., Adsorption and kinetic studies on the removal of chromium and copper onto chitosan-g-maliec anhydride-g-ethylene dimethacrylate. International Journal of Biological Macromolecules 104 (2017), 1578–1585, 10.1016/j.ijbiomac.2017.01.142.
Groll, J., Burdick, J.A., Cho, D.-W., Derby, B., Gelinsky, M., Heilshorn, S.C., Woodfield, T.B.F., A definition of bioinks and their distinction from biomaterial inks. Biofabrication, 11(1), 2018, 13001, 10.1088/1758-5090/aaec52.
Hanif, A., Qureshi, S., Sheikh, Z., Rashid, H., Complications in implant dentistry. European Journal of Dentistry 11:1 (2017), 135–140, 10.4103/ejd.ejd_340_16.
Hilkens, P., Gervois, P., Fanton, Y., Vanormelingen, J., Martens, W., Struys, T., Bronckaers, A., Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell and Tissue Research 353:1 (2013), 65–78, 10.1007/s00441-013-1630-x.
Induri, S., Sengupta, S., Basu, J.K., A kinetic approach to the esterification of maleic anhydride with methanol on H-Y zeolite. Journal of Industrial and Engineering Chemistry 16:3 (2010), 467–473, 10.1016/j.jiec.2010.01.053.
Islam, M.M., Shahruzzaman, M., Biswas, S., Nurus Sakib, M., Rashid, T.U., Chitosan based bioactive materials in tissue engineering applications-a review. Bioactive Materials 5:1 (2020), 164–183, 10.1016/j.bioactmat.2020.01.012.
Jensen, C., Teng, Y., Is it time to start transitioning from 2D to 3D cell culture?. Retrieved from Frontiers in Molecular Biosciences, 7, 2020, 33 https://www.frontiersin.org/article/10.3389/fmolb.2020.00033.
Karaman, R., Dokmak, G., Bader, M., Hallak, H., Khamis, M., Scrano, L., Bufo, S.A., Prodrugs of fumarate esters for the treatment of psoriasis and multiple sclerosis—a computational approach. Journal of Molecular Modeling 19:1 (2013), 439–452, 10.1007/s00894-012-1554-5.
Kassebaum, N.J., Bernabé, E., Dahiya, M., Bhandari, B., Murray, C.J.L., Marcenes, W., Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. Journal of Dental Research 93:11 (2014), 1045–1053, 10.1177/0022034514552491.
Khodakaram-Tafti, A., Mehrabani, D., Shaterzadeh-Yazdi, H., Zamiri, B., Omidi, M., Tissue engineering in maxillary bone defects. Retrieved from World Journal of Plastic Surgery 7:1 (2018), 3–11 https://pubmed.ncbi.nlm.nih.gov/29651386.
Koc, F.E., Altıncekic, T.G., Investigation of gelatin/chitosan as potential biodegradable polymer films on swelling behavior and methylene blue release kinetics. Polymer Bulletin, 2020, 10.1007/s00289-020-03280-7.
Kumar, P., Dehiya, B.S., Sindhu, A., Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. International Nano Letters 7:4 (2017), 285–290, 10.1007/s40089-017-0222-2.
Kwon, Y.-S., Lim, E.-S., Kim, H.-M., Hwang, Y.-C., Lee, K.-W., Min, K.-S., Genipin, a cross-linking agent, promotes odontogenic differentiation of human dental pulp cells. Journal of Endodontics 41:4 (2015), 501–507, 10.1016/j.joen.2014.12.002.
Lavanya, R., Gomathi, T., Vijayalakshmi, K., Saranya, M., Sudha, P.N., Anil, S., Adsorptive removal of copper (II) and lead (II) using chitosan-g-maleic anhydride-g-methacrylic acid copolymer. International Journal of Biological Macromolecules 104 (2017), 1495–1508, 10.1016/j.ijbiomac.2017.04.116.
Lee, J.-H., Kim, H.-W., Emerging properties of hydrogels in tissue engineering. Journal of Tissue Engineering, 9, 2018, 10.1177/2041731418768285 2041731418768285.
Ling, X., Zu-yu, Y., Chao, Y., Hua-yue, Z., Yu-min, D., Swelling studies of chitosan-gelatin films cross-linked by sulfate. Wuhan University Journal of Natural Sciences 9:2 (2004), 247–251, 10.1007/BF02830611.
Mack, F., Schwahn, C., Feine, J.S., Mundt, T., Bernhardt, O., John, U., Biffar, R., The impact of tooth loss on general health related to quality of life among elderly Pomeranians: Results from the study of health in Pomerania (SHIP-O). The International Journal of Prosthodontics 18:5 (2005), 414–419.
Maiz-Fernández, S., Guaresti, O., Pérez-Álvarez, L., Ruiz-Rubio, L., Gabilondo, N., Vilas-Vilela, J.L., Lanceros-Mendez, S., β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydrate Polymers, 248, 2020, 116811, 10.1016/j.carbpol.2020.116811.
Maji, K., Dasgupta, S., Pramanik, K., Bissoyi, A., Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. International Journal of Biomaterials, 2016, 2016, 9825659, 10.1155/2016/9825659.
Mao, J.S., Zhao, L.G., Yin, Y.J., Yao, K.D., Structure and properties of bilayer chitosan–gelatin scaffolds. Biomaterials 24:6 (2003), 1067–1074, 10.1016/S0142-9612(02)00442-8.
Min, L.J., Edgar, T.Y.S., Zicheng, Z., Yee, Y.W., Chapter 6 - Biomaterials for Bioprinting (L. G. Zhang, J. P. Fisher, & K. W. B. T.-3D B. and N. in T. E. and R. M. Leong, Eds.)., 2015 doi:10.1016/B978-0-12-800547-7.00006-0.
Ng, K.W., Leong, D.T.W., Hutmacher, D.W., The challenge to measure cell proliferation in two and three dimensions. Tissue Engineering 11:1–2 (2005), 182–191, 10.1089/ten.2005.11.182.
Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., Du, Y., Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers 63:3 (2006), 367–374, 10.1016/j.carbpol.2005.09.023.
Rickett, T.A., Amoozgar, Z., Tuchek, C.A., Park, J., Yeo, Y., Shi, R., Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules 12:1 (2011), 57–65, 10.1021/bm101004r.
Rosellini, E., Cristallini, C., Barbani, N., Vozzi, G., Giusti, P., Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. Journal of Biomedical Materials Research Part A 91A:2 (2009), 447–453, 10.1002/jbm.a.32216.
Ross-Murphy, S.B., Structure and rheology of gelatin gels: Recent progress. Polymer 33:12 (1992), 2622–2627, 10.1016/0032-3861(92)91146-S.
Seo, J.W., Shin, S.R., Lee, M.-Y., Cha, J.M., Min, K.H., Lee, S.C., Bae, H., Injectable hydrogel derived from chitosan with tunable mechanical properties via hybrid-crosslinking system. Carbohydrate Polymers, 251, 2021, 117036, 10.1016/j.carbpol.2020.117036.
Sung, H.W., Huang, R.N., Huang, L.L., Tsai, C.C., In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science. Polymer Edition 10:1 (1999), 63–78, 10.1163/156856299x00289.
Tsuji, Y., Li, X., Shibayama, M., Evaluation of mesh size in model polymer networks consisting of tetra-arm and linear poly(ethylene glycol)s. Gels (Basel, Switzerland), 4(2), 2018, 50, 10.3390/gels4020050.