[en] Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin-hyaluronan dialdehyde (Gel-HDA) Schiff's polymer, and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting. Temperature sweep rheology measurements show a higher sol-gel transition temperature for IPN (30 °C) compared to gold standard GelMA (27 °C). Furthermore, to determine the tunability of the IPN hydrogel, several IPN samples were prepared by combining different ratios of Gel-HDA and GelMA achieving a compressive modulus ranging from 20.6 ± 2.48 KPa to 116.7 ± 14.80 KPa. Our results showed that the mechanical properties and printability at room temperature could be tuned by adjusting the ratios of GelMA and Gel-HDA. To evaluate cell response to the material, MC3T3-E1 mouse pre-osteoblast cells were embedded in hydrogels and 3D-printed, demonstrating excellent cell viability and proliferation after 10 d of 3Din vitroculture, making the IPN an interesting bioink for the fabrication of 3D constructs for tissue engineering applications.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Anand, Resmi ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium ; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium ; Inter University Centre for Biomedical Research and Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kottayam, Kerala 686009, India
Salar Amoli, Mehdi; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium ; Department of Imaging & Pathology/OMFS-IMPATH Research Group, Campus Sint-Rafaël, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
Huysecom, An-Sofie; Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
Amorim, Paulo Alexandre; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium ; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
Agten, Hannah; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium ; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium ; Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), Leuven, Belgium
Bloemen, Veerle; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium ; Surface and Interface Engineered Materials (SIEM), Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
Language :
English
Title :
A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
H2020 - 772418 - INSITE - Development and use of an integrated in silico-in vitro mesofluidics system for tissue engineering
Funders :
ERC - European Research Council KU Leuven - Catholic University of Leuven EU - European Union
Funding number :
DST/ INSPIRE/04/2016/000482
Funding text :
The authors acknowledge funding from European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant Agreement No. 772418). R A acknowledges DST INSPIRE Faculty award (DST/ INSPIRE/04/2016/000482) for financial support.
M S A acknowledges Research Council of KU Leuven Grant No. (C24/18/068).
Murphy S V. Atala A 2014 3D bioprinting of tissues and organs Nat. Biotechnol. 32 773 85 10.1038/nbt.2958
Gungor-Ozkerim P S. Inci I Zhang Y S. Khademhosseini A Dokmeci M R. 2018 Bioinks for 3D bioprinting: an overview Biomater. Sci. 6 915 46 10.1039/C7BM00765E
Ozbolat I T. Hospodiuk M 2016 Current advances and future perspectives in extrusion-based bioprinting Biomaterials 76 321 43 10.1016/j.biomaterials.2015.10.076
Amorim P A. d'Ávila M A. Anand R Moldenaers P Van Puyvelde P Bloemen V 2021 Insights on shear rheology of inks for extrusion-based 3D bioprinting Bioprinting 22 e00129 10.1016/j.bprint.2021.e00129
Stanton M M. Samitier J Sánchez S 2015 Bioprinting of 3D hydrogels Lab Chip 15 3111 5 10.1039/C5LC90069G
Chimene D Kaunas R Gaharwar A K. 2020 Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies Adv. Mater. 32 1902026 10.1002/adma.201902026
Liu W et al 2017 Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks Adv. Healthcare Mater. 6 1601451 10.1002/adhm.201601451
Yue K Trujillo-de Santiago G Alvarez M M. Tamayol A Annabi N Khademhosseini A 2015 Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels Biomaterials 73 254 71 10.1016/j.biomaterials.2015.08.045
Pepelanova I Kruppa K Scheper T Lavrentieva A 2018 Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting Bioengineering 5 55 10.3390/bioengineering5030055
Hoch E Hirth T Tovar G E. M. Borchers K 2013 Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting J. Mater. Chem. B 1 5675 10.1039/c3tb20745e
Gao Q et al 2019 3D printing of complex GelMA-based scaffolds with nanoclay Biofabrication 11 035006 10.1088/1758-5090/ab0cf6
Sultan S Mathew A P. 2018 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel Nanoscale 10 4421 31 10.1039/C7NR08966J
Fares M M. Shirzaei Sani E Portillo Lara R Oliveira R B. Khademhosseini A Annabi N 2018 Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering Biomater. Sci. 6 2938 50 10.1039/C8BM00474A
Zhou M Lee B H. Tan Y J. Tan L P. 2019 Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing Biofabrication 11 025011 10.1088/1758-5090/ab063f
Schipani R Scheurer S Florentin R Critchley S E. Kelly D J. 2020 Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites Biofabrication 12 035011 10.1088/1758-5090/ab8708
Matricardi P Di Meo C Coviello T Hennink W E. Alhaique F 2013 Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering Adv. Drug Deliv. Rev. 65 1172 87 10.1016/j.addr.2013.04.002
Hemshekhar M Thushara R M. Chandranayaka S Sherman L S. Kemparaju K Girish K S. 2016 Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine Int. J. Biol. Macromol. 86 917 28 10.1016/j.ijbiomac.2016.02.032
Misra S Hascall V C. Markwald R R. Ghatak S 2015 Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer Front. Immunol. 6 1 31 10.3389/fimmu.2015.00201
Murakami T Otsuki S Okamoto Y Nakagawa K Wakama H Okuno N Neo M 2019 Hyaluronic acid promotes proliferation and migration of human meniscus cells via a CD44-dependent mechanism Connect. Tissue Res. 60 117 27 10.1080/03008207.2018.1465053
Abatangelo G Vindigni V Avruscio G Pandis L Brun P 2020 Hyaluronic acid: redefining its role Cells 9 1743 10.3390/cells9071743
Pescosolido L Schuurman W Malda J Matricardi P Alhaique F Coviello T van Weeren P R. Dhert W J. A. Hennink W E. Vermonden T 2011 Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting Biomacromolecules 12 1831 8 10.1021/bm200178w
Lou J Stowers R Nam S Xia Y Chaudhuri O 2018 Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture Biomaterials 154 213 22 10.1016/j.biomaterials.2017.11.004
Deng Y Ren J Chen G Li G Wu X Wang G Gu G Li J 2017 Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration Sci. Rep. 7 2699 10.1038/s41598-017-02962-z
Shirahama H Lee B H. Tan L P. Cho N.-J. 2016 Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis Sci. Rep. 6 31036 10.1038/srep31036
Ouyang L Yao R Zhao Y Sun W 2016 Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells Biofabrication 8 035020 10.1088/1758-5090/8/3/035020
Schindelin J et al 2012 Fiji: an open-source platform for biological-image analysis Nat. Methods 9 676 82 10.1038/nmeth.2019
Pandit A H. Mazumdar N Ahmad S 2019 Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications Int. J. Biol. Macromol. 137 853 69 10.1016/j.ijbiomac.2019.07.014
Peach R Hollenbaugh D Stamenkovic I Aruffo A 1993 Identification of hyaluronic acid binding sites in the extracellular domain of CD44 J. Cell Biol. 122 257 64 10.1083/jcb.122.1.257
Zhu H Mitsuhashi N Klein A Barsky L W. Weinberg K Barr M L. Demetriou A Wu G D. 2006 The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix Stem Cells 24 928 35 10.1634/stemcells.2005-0186
Weng L Pan H Chen W 2008 Self-crosslinkable hydrogels composed of partially oxidized hyaluronan and gelatin: invitro andin vivo responses J. Biomed. Mater. Res. A 85A 352 65 10.1002/jbm.a.31491
Su W.-Y. Chen Y.-C. Lin F.-H. 2010 Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration Acta Biomater. 6 3044 55 10.1016/j.actbio.2010.02.037
Zhou X Zhu W Nowicki M Miao S Cui H Holmes B Glazer R I. Zhang L G. 2016 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study ACS Appl. Mater. Interfaces 8 30017 26 10.1021/acsami.6b10673
Yin J Yan M Wang Y Fu J Suo H 2018 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy ACS Appl. Mater. Interfaces 10 6849 57 10.1021/acsami.7b16059
Noshadi I et al 2017 In vitro in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels Biomater. Sci. 5 2093 105 10.1039/C7BM00110J
Beck E C. Barragan M Tadros M H. Gehrke S H. Detamore M S. 2016 Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel Acta Biomater. 38 94 105 10.1016/j.actbio.2016.04.019
Krishnamoorthy S Noorani B Xu C 2019 Effects of encapsulated cells on the physical-mechanical properties and microstructure of gelatin methacrylate hydrogels Int. J. Mol. Sci. 20 5061 10.3390/ijms20205061
Zhao X Lang Q Yildirimer L Lin Z Y. Cui W Annabi N Ng K W. Dokmeci M R. Ghaemmaghami A M. Khademhosseini A 2016 Photocrosslinkable gelatin hydrogel for epidermal tissue engineering Adv. Healthcare Mater. 5 108 18 10.1002/adhm.201500005
Suo H Zhang D Yin J Qian J Wu Z L. Fu J 2018 Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering Mater. Sci. Eng. C 92 612 20 10.1016/j.msec.2018.07.016