[en] The dilution of minute concentration of polymers in wall-bounded flows is well-known for its unparalleled ability to reduce turbulent friction drag. Another phenomenon, elasto-inertial turbulence (EIT), has been far less studied even though elastic instabilities have already been observed in dilute polymer solutions before the discovery of polymer drag reduction. EIT is a chaotic state driven by polymer dynamics that is observed across many orders of magnitude in Reynolds number. It involves energy transfer from small elastic scales to large flow scales. The investigation of the mechanisms of EIT offers the possibility to better understand other complex phenomena such as elastic turbulence and maximum drag reduction. In this review, we survey recent research efforts that are advancing the understanding of the dynamics of EIT. We highlight the fundamental differences between EIT and Newtonian/inertial turbulence from the perspective of experiments, numerical simulations, instabilities, and coherent structures. Finally, we discuss the possible links between EIT and elastic turbulence and polymer drag reduction, as well as the remaining challenges in unraveling the self-sustaining mechanism of EIT.
Precision for document type :
Review article
Disciplines :
Mechanical engineering
Author, co-author :
Dubief, Yves
Terrapon, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Hof, Björn; Institute of Science and Technology Austria
Language :
English
Title :
Elasto-Inertial Turbulence
Publication date :
2023
Journal title :
Annual Review of Fluid Mechanics
ISSN :
0066-4189
eISSN :
1545-4479
Publisher :
Annual Reviews, United States
Volume :
55
Pages :
675-705
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agarwal A, Brandt L, Zaki TA. 2014. Linear and nonlinear evolution of a localized disturbance in polymeric channel flow. J. Fluid Mech. 760:278-303
Alves M, Oliveira P, Pinho F. 2021. Numerical methods for viscoelastic fluid flows. Annu. Rev. Fluid Mech. 53:509-41
Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B. 2011. The onset of turbulence in pipe flow. Science 333(6039):192-96
Avila M, Barkley D, Hof B. 2023. Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech. 55:575-602
Barnes HA, Hutton JF, Walters K. 1989. An Introduction to Rheology, Vol. 3. Amsterdam: Elsevier
Batchelor GK. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5(1):113-33
Batchelor GK, Howells ID, Townsend AA. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity. J. Fluid Mech. 5(1):134-39
Berti S, Bistagnino A, Boffetta G, Celani A, Musacchio S. 2008. Two-dimensional elastic turbulence. Phys. Rev. E 77(5):055306
Bird R, Armstrong R, Hassager O. 1987. Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory.New York:Wiley- Intersci.
Buza G, Page J, Kerswell RR. 2022. Weakly nonlinear analysis of the viscoelastic instability in channel flow for finite and vanishing Reynolds numbers. J. Fluid Mech. 940:A11
Chandra B, Shankar V, Das D. 2018. Onset of transition in the flow of polymer solutions through microtubes. J. Fluid Mech. 844:1052-83
Chandra B, Shankar V, Das D. 2020. Early transition, relaminarization and drag reduction in the flow of polymer solutions through microtubes. J. Fluid Mech. 885:A47
Chaudhary I, Garg P, Shankar V, Subramanian G. 2019. Elasto-inertial wall mode instabilities in viscoelastic plane Poiseuille flow. J. Fluid Mech. 881:119-63
Chaudhary I, Garg P, Subramanian G, Shankar V. 2021. Linear instability of viscoelastic pipe flow. J. Fluid Mech. 908:A11
Choueiri GH, Lopez JM, Hof B. 2018. Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120(12):124501
Choueiri GH, Lopez JM, Varshney A, Sankar S, Hof B. 2021. Experimental observation of the origin and structure of elastoinertial turbulence. PNAS 118(45):e2102350118
Doering CR, Eckhardt B, Schumacher J. 2006. Failure of energy stability in Oldroyd-B fluids at arbitrarily low Reynolds numbers. J. Non-Newton. Fluid Mech. 135(2-3):92-96
Dong M, Zhang M. 2022. Asymptotic study of linear instability in a viscoelastic pipe flow. J. Fluid Mech. 935:A28
Dubief Y, Delcayre F. 2000. On coherent-vortex identification in turbulence. J. Turbul. 1:N11
Dubief Y, Page J, Kerswell RR, Terrapon VE, Steinberg V. 2022. A first coherent structure in elasto-inertial turbulence. Phys. Rev. Fluids 7:073301
Dubief Y, Terrapon V, White C, Shaqfeh E, Moin P, Lele S. 2005. New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74(4):311-29
Dubief Y, Terrapon VE, Soria J. 2013. On the mechanism of elasto-inertial turbulence. Phys. Fluids 25(11):110817
Dubief Y, White C. 2011. Elastic turbulence in high Reynolds number polymer drag reduced flows.Abstract presented at APS Division of Fluid Dynamics Meeting, Baltimore, MD, Nov. 20-22, Abstr. M8-002
Dubief Y, White CM, Shaqfeh ESG, Terrapon VE. 2010. Polymer maximum drag reduction: a unique transitional state. In Annual Research Briefs, pp. 395-404. Stanford, CA: Cent. Turbul. Res.
Eckhardt B, Schneider TM, Hof B, Westerweel J. 2007. Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39:447-68
Fattal R, Kupferman R. 2005. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newton. Fluid Mech. 126:23-37
Forame PC, Hansen RJ, Little RC. 1972. Observations of early turbulence in the pipe flow of drag reducing polymer solutions. AIChE J. 18:213-17
Garg P, Chaudhary I, Khalid M, Shankar V, Subramanian G. 2018. Viscoelastic pipe flow is linearly unstable. Phys. Rev. Lett. 121(2):024502
Goldstein M, Hultgren LS. 1989. Boundary-layer receptivity to long-wave free-stream disturbances. Annu. Rev. Fluid Mech. 21:137-66
Gorodtsov V, Leonov A. 1967. On a linear instability of a plane parallel Couette flow of viscoelastic fluid. J. Appl. Math.Mech. 31(2):310-19
Graham MD. 2014. Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids 26(10):101301
Graham MD, Floryan D. 2021. Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows. Annu. Rev. Fluid Mech. 53:227-53
Grillet AM, Bogaerds AC, Peters GW, Baaijens FP. 2002. Stability analysis of constitutive equations for polymer melts in viscometric flows. J. Non-Newton. Fluid Mech. 103(2-3):221-50
Groisman A, Steinberg V. 2000. Elastic turbulence in a polymer solution flow. Nature 405(6782):53-55
Hameduddin I, Gayme DF, Zaki TA. 2019. Perturbative expansions of the conformation tensor in viscoelastic flows. J. Fluid Mech. 858:377-406
Hameduddin I, Meneveau C, Zaki TA, Gayme DF. 2018. Geometric decomposition of the conformation tensor in viscoelastic turbulence. J. Fluid Mech. 842:395-427
Hariharan G, Jovanoví MR, Kumar S. 2018. Amplification of localized body forces in channel flows of viscoelastic fluids. J. Non-Newton. Fluid Mech. 260:40-53
Ho TC, Denn MM. 1977. Stability of plane Poiseuille flow of a highly elastic liquid. J. Non-Newton. Fluid Mech. 3(2):179-95
Hoda N, Jovanoví MR, Kumar S. 2008. Energy amplification in channel flows of viscoelastic fluids. J. Fluid Mech. 601:407-24
Hoda N, JovanovíMR, Kumar S. 2009. Frequency responses of streamwise-constant perturbations in channel flows of Oldroyd-B fluids. J. Fluid Mech. 625:411-34
Hof B, De Lozar A, Kuik DJ, Westerweel J. 2008. Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101(21):214501
Hof B, Samanta D, Wagner C. 2011. The maximum drag reduction asymptote.Abstract presented at APS Division of Fluid Dynamics Meeting, Baltimore, MD, Nov. 20-22, Abstr. M8-005
Hof B, Westerweel J, Schneider TM, Eckhardt B. 2006. Finite lifetime of turbulence in shear flows. Nature 443(7107):59-62
Hoyt J. 1977. Laminar-turbulent transition in polymer solutions. Nature 270:508-9
Hunt JC, Wray AA, Moin P. 1988. Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, II: Proceedings of the 1988 Summer Program, pp. 193-208. Stanford, CA: Cent. Turbul. Res.
Jha NK, Steinberg V. 2021. Elastically driven Kelvin-Helmholtz-like instability in straight channel flow.PNAS 118(34):e2105211118
Jiménez J. 1994. On the structure and control of near wall turbulence. Phys. Fluids 6(2):944-53
Jiménez J, Flores O, Garca-Villalba M. 2001. The large-scale organization of autonomous turbulent wall regions. In Annual Research Briefs 2001, pp. 317-27. Stanford, CA: Cent. Turbul. Res.
Jiménez J, Moin P. 1991. The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225:213-40
Jiménez J, Pinelli A. 1999. The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389:335-59
Jovanoví MR, Kumar S. 2009. Variance amplification in channel flows of strongly elastic polymer solutions. In 2009 American Control Conference, pp. 842-47. New York: IEEE
Jovanoví MR, Kumar S. 2010. Transient growth without inertia. Phys. Fluids 22(2):023101
Jovanoví MR, Kumar S. 2011. Nonmodal amplification of stochastic disturbances in strongly elastic channel flows. J. Non-Newton. Fluid Mech. 166(14-15):755-78
Kerswell RR. 2005. Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18(6):R17-44
Khalid M, Chaudhary I, Garg P, Shankar V, Subramanian G. 2021a.The centre-mode instability of viscoelastic plane Poiseuille flow. J. Fluid Mech. 915:A43
Khalid M, Shankar V, Subramanian G. 2021b. Continuous pathway between the elasto-inertial and elastic turbulent states in viscoelastic channel flow. Phys. Rev. Lett. 127(13):134502
Kim J, Moin P, Moser R. 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177:133-66
Larson RG. 1992. Instabilities in viscoelastic flows. Rheol. Acta 31(3):213-63
Larson RG, Shaqfeh E, Muller S. 1990. A purely elastic instability in Taylor-Couette flow. J. Fluid Mech. 218(1):573-600
Layec Y, Layec-Raphalen MN. 1983. Instability of dilute poly (ethylene-oxide) solutions. J. Phys. Lett. 44(3):121-28
Li CF, Sureshkumar R, Khomami B. 2006. Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newton. Fluid Mech. 140(1-3):23-40
Li W, Graham M. 2007. Polymer induced drag reduction in exact coherent structures of plane Poiseuille flow. Phys. Fluids 19:083101
Little RC, Hansen R, Hunston D, Kim O, Patterson R, Ting R. 1975. The drag reduction phenomenon. Observed characteristics, improved agents, and proposed mechanisms. Ind. Eng. Chem. Fundamen. 14(4):283-96
Little RC, Wiegard M. 1970. Drag reduction and structural turbulence in flowing polyox solutions. J. Appl. Polymer Sci. 14(2):409-19
Lopez JM, Choueiri GH, Hof B. 2019. Dynamics of viscoelastic pipe flow at low Reynolds numbers in the maximum drag reduction limit. J. Fluid Mech. 874:699-719
Lumley J. 1969. Drag reduction by additives. Ann. Rev. Fluid Mech. 1:367-84
McKinley GH, Byars JA, Brown RA, Armstrong RC. 1991. Observations on the elastic instability in cone-andplate and parallel-plate flows of a polyisobutylene Boger fluid. J. Non-Newton. Fluid Mech. 40(2):201-29
Meulenbroek B, Storm C, Morozov AN, van Saarloos W. 2004. Weakly nonlinear subcritical instability of visco-elastic Poiseuille flow. J. Non-Newton. Fluid Mech. 116(2-3):235-68
Min T, Yoo JY, Choi H. 2001. Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows. J. Non-Newton. Fluid Mech. 100(1-3):27-47
Morozov AN, van Saarloos W. 2005. Subcritical finite-amplitude solutions for plane Couette flow of viscoelastic fluids. Phys. Rev. Lett. 95(2):024501
Morozov AN, van Saarloos W. 2007. An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Phys. Rep. 447(3-6):112-43
Morozov AN, van Saarloos W. 2019. Subcritical instabilities in plane Poiseuille flow of an Oldroyd-B fluid. J. Stat. Phys. 175(3-4):554-77
Mukund V, Hof B. 2018. The critical point of the transition to turbulence in pipe flow. J. FluidMech. 839:76-94
Orlandi P, Jiménez J. 1994. On the generation of turbulent wall friction. Phys. Fluids 6(2):634-41
Ostwald W, Auerbach R. 1926. Ueber die Viskosität kolloider Lösungen im Struktur-, Laminar- und Turbulenzgebiet. Kolloid-Zeitschrift 38(3):261-280
Page J, Dubief Y, Kerswell RR. 2020. Exact traveling wave solutions in viscoelastic channel flow. Phys. Rev. Lett. 125(15):154501
Page J, Zaki TA. 2014. Streak evolution in viscoelastic Couette flow. J. Fluid Mech. 742:520-51
Page J, Zaki TA. 2015. The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shear flow. J. Fluid Mech. 777:327-63
Páll S, Zhmurov A, Bauer P, Abraham M, Lundborg M, et al. 2020. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 153(13):134110
Pan L, Morozov A, Wagner C, Arratia P. 2013. Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys. Rev. Lett. 110(17):174502
Porteous KC, Denn MM. 1972. Linear stability of plane Poiseuille flow of viscoelastic liquids.Trans. Soc. Rheol. 16(2):295-308
Ptasinski P, Boersma B, Nieuwstadt F, Hulsen M, Van den Brule B, Hunt J. 2003. Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490:251-91
Qin B, Arratia PE. 2017. Characterizing elastic turbulence in channel flows at low Reynolds number. Phys. Rev. Fluids 2(8):083302
Ram A, Tamir A. 1964. Structural turbulence in polymer solutions. J. Appl. Polymer Sci. 8(6):2751-62
Reiner M. 1926a. Ueber die Strömung einer elastischen Flüssigkeit durch eine Kapillare. Kolloid-Zeitschrift 39(1):80-87
Reiner M. 1926b. Zur Theorie der "Strukturturbulenz." Kolloid-Zeitschrift 39(4):314-15
Reynolds O. 1883. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174:935-82
Samanta D, Dubief Y, Holzner M, Schäfer C, Morozov AN, et al. 2013. Elasto-inertial turbulence. PNAS 110(26):10557-62
Sánchez HAC, Jovanoví MR, Kumar S, Morozov A, Shankar V, et al. 2022. Understanding viscoelastic flow instabilities: Oldroyd-B and beyond. J. Non-Newton. Fluid Mech. 302:104472
Schmid PJ, Henningson D. 2000. Stability and Transition in Shear Flows. New York: Springer
Shaqfeh E. 1996. Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28:129-85
Shekar A, McMullen RM, McKeon BJ, Graham MD. 2020. Self-sustained elastoinertial Tollmien-Schlichting waves. J. Fluid Mech. 897:A3
Shekar A, McMullen RM, McKeon BJ, Graham MD. 2021. Tollmien-Schlichting route to elastoinertial turbulence in channel flow. Phys. Rev. Fluids 6(9):093301
Shekar A, McMullen RM, Wang SN, McKeon BJ, Graham MD. 2019. Critical-layer structures and mechanisms in elastoinertial turbulence. Phys. Rev. Lett. 122(12):124503
Sid S, Terrapon VE, Dubief Y. 2018. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction. Phys. Rev. Fluids 3(1):011301
Srinivas SS, Kumaran V. 2017. Effect of viscoelasticity on the soft-wall transition and turbulence in a microchannel. J. Fluid Mech. 812:1076-118
Steinberg V. 2021. Elastic turbulence: an experimental view on inertialess random flow. Annu. Rev. FluidMech. 53:27-58
Stone P, Roy A, Larson R, Waleffe F, Graham M. 2004. Polymer drag reduction in exact coherent structures of plane shear flow. Phys. Fluids 16:3470
Sureshkumar R, Beris AN. 1995a. Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows. J. Non-Newton. Fluid Mech. 60(1):53-80
Sureshkumar R, Beris AN. 1995b. Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm. J. Non-Newton. Fluid Mech. 56(2):151-82
Sureshkumar R, Beris AN, Handler R. 1997. Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9:743
Tabor M, De Gennes P. 1986. A cascade theory of drag reduction. Europhys. Lett. 2:519-22
Terrapon VE, Dubief Y, Soria J. 2015. On the role of pressure in elasto-inertial turbulence. J. Turbul. 16(1):26-43
Thais L, Tejada-Mart AE, Gatski TB, Mompean G, et al. 2011. A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput. Fluids 43(1):134-42
Toms BA. 1948. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the First International Congress on Rheology, pp. 135-41. Amsterdam: N. Holland
Vaithianathan T, Collins L. 2003. Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. J. Comput. Phys. 187:1-21
Vaithianathan T, Robert A, Brasseur JG, Collins LR. 2006. An improved algorithm for simulating threedimensional, viscoelastic turbulence. J. Non-Newton. Fluid Mech. 140(1-3):3-22
Vinogradov GV, Manin VN. 1965. An experimental study of elastic turbulence. Kolloid-Z. Z. Polym. 201(2):93-98
Virk P, Mickley H, Smith K. 1970. The ultimate asymptote and mean flow structure in Toms' phenomenon. J. Appl.Mech 37:488-93
Waleffe F. 1997. On a self-sustaining process in shear flows. Phys. Fluids 9(4):883-900
Waleffe F. 2001. Exact coherent structures in channel flow. J. Fluid Mech. 435:93-102
Wan D, Sun G, Zhang M. 2021. Subcritical and supercritical bifurcations in axisymmetric viscoelastic pipe flows. J. Fluid Mech. 929:A16
Warholic M, Massah H, Hanratty T. 1999. Influence of drag-reducing polymers on turbulence: effects of Reynolds number concentration and mixing. Exp. Fluids 27(5):461-72
Warner HR. 1972. Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam. 11(3):379-87
Wen C, Poole RJ, Willis AP, Dennis DJC. 2017. Experimental evidence of symmetry-breaking supercritical transition in pipe flow of shear-thinning fluids. Phys. Rev. Fluids 2(3):031901
White C, Mungal M. 2008. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40:235-56
Wilson HJ, Renardy M, Renardy Y. 1999. Structure of the spectrum in zero Reynolds number shear flow of the UCM and Oldroyd-B liquids. J. Non-Newton. Fluid Mech. 80(2-3):251-68
Xi L. 2019. Turbulent drag reduction by polymer additives: fundamentals and recent advances. Phys. Fluids 31:121302
Xi L, Graham M. 2010. Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104(21):218301
Zhang M. 2021. Energy growth in subcritical viscoelastic pipe flows. J. Non-Newton. Fluid Mech. 294:104581
Zhang M, Lashgari I, Zaki TA, Brandt L. 2013. Linear stability analysis of channel flow of viscoelasticOldroyd- B and FENE-P fluids. J. Fluid Mech. 737:249-79
Zhang WH, Shao QQ, Li YK, Ma Y, Zhang HN, Li FC. 2021a. On the mechanisms of sheet-like extension structures formation and self-sustaining process in elasto-inertial turbulence. Phys. Fluids 33(8):085107
Zhang WH, Zhang HN, Li YK, Yu B, Li FC. 2021b. Role of elasto-inertial turbulence in viscoelastic dragreducing turbulence. Phys. Fluids 33(8):081706
Zhang WH, Zhang HN, Wang ZM, Li YK, Yu B, Li FC. 2022. Repicturing viscoelastic drag-reducing turbulence by introducing dynamics of elasto-inertial turbulence. J. Fluid Mech. 940:A31
Zhu L, Xi L. 2021. Nonasymptotic elastoinertial turbulence for asymptotic drag reduction. Phys. Rev. Fluids 6(1):014601
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.