B. Kaltenbacher and I. Shevchenko, Well-posedness of the Westervelt equation with higher order absorbing boundary conditions, J. Math. Anal. Appl., 479 (2019), pp. 1595-1617.
R. Kechroud, X. Antoine, and A. Soula\"{\i}mani, Numerical accuracy of a Pad\'e-type nonreflecting boundary condition for the finite element solution of acoustic scattering problems at high-frequency, Internat. J. Numer. Methods Engrg., 64 (2005), pp. 1275-1302.
J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions, J. Comput. Phys., 82 (1989), pp. 172-192.
S. Kim, Analysis of the convected Helmholtz equation with a uniform mean flow in a waveguide with complete radiation boundary conditions, J. Math. Anal. Appl., 410 (2014), pp. 275-291.
O. Lafitte, The kernel of the Neumann operator for a strictly diffractive analytic problem, Comm. Partial Differential Equations, 20 (1995), pp. 419-483.
J. H. Lee, Root-finding absorbing boundary condition for poroelastic wave propagation in infinite media, Soil Dynam. Earthquake Eng., 129 (2020), 105933.
M. Levy \', Parabolic Equation Methods for Electromagnetic Wave Propagation, Electromagn. Wave Ser. 45, Institution of Electrical Engineers, London, 2000.
A. Lieu, P. Marchner, G. Gabard, H. Beriot, X. Antoine, and C. Geuzaine, A non-overlapping Schwarz domain decomposition method with high-order finite elements for flow acoustics, Comput. Methods Appl. Mech. Engrg., 369 (2020), p. 113223.
Y. Y. Lu, Some techniques for computing wave propagation in optical waveguides, Commun. Comput. Phys., 1 (2006), pp. 1056-1075.
A. Majda and S. Osher, Reflection of singularities at the boundary, Comm. Pure Appl. Math., 28 (1975), pp. 479-499.
P. Marchner, X. Antoine, C. Geuzaine, and H. Beriot \', Construction and Numerical Assessment of Local Absorbing Boundary Conditions for Heterogeneous Time-Harmonic Acoustic Problems, preprint, HAL-03196015, 2021.
P. Marchner, H. Beriot, X. Antoine, and C. Geuzaine, Stable perfectly matched layers with Lorentz transformation for the convected Helmholtz equation, J. Comput. Phys., 433 (2021), p. 110180.
A. Meurer, C. P. Smith, M. Paprocki, O. Cert \v \'{\i}k, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, et al., SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 3 (2017), e103.
F. A. Milinazzo, C. A. Zala, and G. H. Brooke, Rational square-root approximations for parabolic equation algorithms, J. Acoust. Soc. Amer., 101 (1997), pp. 760-766.
A. Modave, C. Geuzaine, and X. Antoine, Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering, J. Comput. Phys., 401 (2020), 109029.
L. Nirenberg, Pseudodifferential operators and some applications, in Lectures on Linear Partial Differential Equations, CBMS Reg. Conf. Ser. Math. 17, AMS, Providence, RI, 1973, pp. 19-58.
K. Okamoto, Fundamentals of Optical Waveguides, Academic Press, New York, 2006.
A. D. Pierce, Wave equation for sound in fluids with unsteady inhomogeneous flow, J. Acoust. Soc. Amer., 87 (1990), pp. 2292-2299.
D. Rabinovich, D. Givoli, J. Bielak, and T. Hagstrom, The double absorbing boundary method for elastodynamics in homogeneous and layered media, Adv. Model. Simul. Eng. Sci., 2 (2015), pp. 1-27.
S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics, https://www.win.tue.nl/ \sim sjoerdr/papers/boek.pdf, 2004.
A. Royer, E. Bechet, \' and C. Geuzaine, GMSH-Fem: An efficient finite element library based on GMSH, in Procedings of the 14th World Congress on Computational Mechanics (WCCM) \& ECCOMAS Congress, 2021.
S. Savadatti and M. N. Guddati, Accurate absorbing boundary conditions for anisotropic elastic media. Part 1: Elliptic anisotropy, J. Comput. Phys., 231 (2012), pp. 7584-7607.
I. Shevchenko and B. Kaltenbacher, Absorbing boundary conditions for nonlinear acoustics: The Westervelt equation, J. Comput. Phys., 302 (2015), pp. 200-221.
P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite Element Methods, CRC Press, Boca Raton, FL, 2003.
C. C. Stolk, A pseudodifferential equation with damping for one-way wave propagation in inhomogeneous acoustic media, Wave Motion, 40 (2004), pp. 111-121.
M. E. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, NJ, 1981.
L. N. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools 10, SIAM, Philadelphia, 2000.
X. Antoine, H. Barucq, and A. Bendali, Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape, J. Math. Anal. Appl., 229 (1999), pp. 184-211.
X. Antoine, C. Besse, and P. Klein, Absorbing boundary conditions for the one-dimensional Schr\" odinger equation with an exterior repulsive potential, J. Comput. Phys., 228 (2009), pp. 312-335.
X. Antoine, M. Darbas, and Y. Y. Lu, An improved surface radiation condition for high-frequency acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 4060-4074.
X. Antoine and C. Geuzaine, Optimized Schwarz domain decomposition methods for scalar and vector Helmholtz equations, in Modern Solvers for Helmholtz Problems, V. K. Lahaye D., and Tang J., eds., Geosyst. Math., Birkh\"auser, Cham, 2017, pp. 189-213.
R. Astley, Infinite elements for wave problems: A review of current formulations and an assessment of accuracy, Internat. J. Numer. Methods Engrg., 49 (2000), pp. 951-976.
H. Barucq, J. Chabassier, M. Durufle, \' L. Gizon, and M. Leguebe \`, Atmospheric radiation boundary conditions for the Helmholtz equation, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 945-964.
H. Barucq, F. Faucher, and H. Pham, Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 1111-1138.
A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1981), pp. 707-725.
E. Becache, \' D. Givoli, and T. Hagstrom, High-order absorbing boundary conditions for anisotropic and convective wave equations, J. Comput. Phys., 229 (2010), pp. 1099-1129.
R. Belanger-Rioux \' and L. Demanet, Compressed absorbing boundary conditions via matrix probing, SIAM J. Numer. Anal., 53 (2015), pp. 2441-2471.
J.-P. Berenger \', A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185-200.
H. Beriot \' and A. Modave, An automatic perfectly matched layer for acoustic finite element simulations in convex domains of general shape, Internat. J. Numer. Methods Engrg., 122 (2021), pp. 1239-1261.
H. Beriot, \' A. Prinn, and G. Gabard, Efficient implementation of high-order finite elements for Helmholtz problems, Internat. J. Numer. Methods Engrg., 106 (2016), pp. 213-240.
A. Bermudez, \' L. Hervella-Nieto, A. Prieto, and R. Rodr\'{\i}guez, Perfectly matched layers for time-harmonic second order elliptic problems, Arch. Comput. Methods Eng., 17 (2010), pp. 77-107.
A. Bonnet-Bendhia, L. Dahi, E. Luneville, \' and V. Pagneux, Acoustic diffraction by a plate in a uniform flow, Math. Models Methods Appl. Sci., 12 (2002), pp. 625-647.
Y. Boubendir, X. Antoine, and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation, J. Comput. Phys., 231 (2012), pp. 262-280.
S. Chaillat, M. Darbas, and F. Le Louer \", Fast iterative boundary element methods for high-frequency scattering problems in 3D elastodynamics, J. Comput. Phys., 341 (2017), pp. 429-446.
F. Collino and C. Tsogka, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 66 (2001), pp. 294-307.
A. Cummings, Sound generation and transmission in flow ducts with axial temperature gradients, J. Sound Vib., 57 (1978), pp. 261-279.
L. Demanet and L. Ying, Discrete symbol calculus, SIAM Rev., 53 (2011), pp. 71-104.
V. Dolean, P. Jolivet, and F. Nataf, An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, SIAM, Philadelphia, 2015.
V. Druskin, S. Guttel, \" and L. Knizhnerman, Compressing Variable-Coefficient Exterior Helmholtz Problems via RKFIT, Manchester Institute for Mathematical Sciences, University of Manchester, 2016.
V. Druskin, S. Guttel, \" and L. Knizhnerman, Near-optimal perfectly matched layers for indefinite Helmholtz problems, SIAM Rev., 58 (2016), pp. 90-116.
B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), pp. 629-651.
B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., 32 (1979), pp. 313-357.
G. Gabard, H. Beriot, \' A. Prinn, and K. Kucukcoskun, Adaptive, high-order finite-element method for convected acoustics, AIAA J., 56 (2018), pp. 3179-3191.
M. Gander, F. Magoules, and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24 (2002), pp. 38-60.
M. J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), pp. 699-731.
M. J. Gander and H. Zhang, A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SIAM Rev., 61 (2019), pp. 3-76.
C. Geuzaine and J.-F. Remacle, GMSH: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309-1331.
D. Givoli, High-order local non-reflecting boundary conditions: A review, Wave Motion, 39 (2004), pp. 319-326.
M. E. Goldstein, Aeroacoustics, McGraw-Hill, New York, 1976.
T. Ha-Duong and P. Joly, On the stability analysis of boundary conditions for the wave equation by energy methods. I. The homogeneous case, Math. Comp., 62 (1994), pp. 539-563.
T. Hagstrom, E. Becache, \' D. Givoli, and K. Stein, Complete radiation boundary conditions for convective waves, Commun. Comput. Phys., 11 (2012), pp. 610-628.
T. Hagstrom, D. Givoli, D. Rabinovich, and J. Bielak, The double absorbing boundary method, J. Comput. Phys., 259 (2014), pp. 220-241.
T. Hagstrom, S. Hariharan, and D. Thompson, High-order radiation boundary conditions for the convective wave equation in exterior domains, SIAM J. Sci. Comput., 25 (2003), pp. 1088-1101.
T. Hagstrom, A. Mar-Or, and D. Givoli, High-order local absorbing conditions for the wave equation: Extensions and improvements, J. Comput. Phys., 227 (2008), pp. 3322-3357.
T. Hagstrom and T. Warburton, A new auxiliary variable formulation of high-order local radiation boundary conditions: Corner compatibility conditions and extensions to first-order systems, Wave Motion, 39 (2004), pp. 327-338.
T. Hagstrom and T. Warburton, Complete radiation boundary conditions: Minimizing the long time error growth of local methods, SIAM J. Numer. Anal., 47 (2009), pp. 3678-3704.
T. Hasgtrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), pp. 47-106.
R. L. Higdon, Radiation boundary conditions for dispersive waves, SIAM J. Numer. Anal., 31 (1994), pp. 64-100.
T. Hohage and L. Nannen, Hardy space infinite elements for scattering and resonance problems, SIAM J. Numer. Anal., 47 (2009), pp. 972-996.
L. Hormander \", The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators, Springer-Verlag, Berlin, 1985.
M. S. Howe, Acoustics of Fluid-Structure Interactions, Cambridge University Press, Cambridge, 1998.
S. G. Johnson, Notes on Perfectly Matched Layers (PMLs), Lecture notes, Massachusetts Institute of Technology, https://math.mit.edu/\sim stevenj/18.369/pml.pdf, 2007.
L. N. Trefethen and L. Halpern, Well-posedness of one-way wave equations and absorbing boundary conditions, Math. Comp., 47 (1986), pp. 421-435.
S. V. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27 (1998), pp. 465-532.
E. Turkel, Boundary conditions and iterative schemes for the Helmholtz equation in unbounded regions, Comput. Methods Acoust. Problems, 2008, pp. 127-158.
E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27 (1998), pp. 533-557.
A. Vion and C. Geuzaine, Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem, J. Comput. Phys., 266 (2014), pp. 171-190.