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bUniversité de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
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Abstract

This article is devoted to the derivation and assessment of local Absorbing Boundary Conditions (ABCs)
for numerically solving heterogeneous time-harmonic acoustic problems. To this end, we develop a strategy
inspired by the work of Engquist and Majda to build local approximations of the Dirichlet-to-Neumann oper-
ator for heterogeneous media, which is still an open problem. We focus on three simplified but characteristic
examples of increasing complexity to highlight the strengths and weaknesses of the proposed ABCs: the
propagation in a duct with a longitudinal variation of the speed of sound, the propagation in a non-uniform
mean flow using a convected wave operator, and the propagation in a duct with a transverse variation of the
speed of sound and density. For each case, we follow the same systematic approach to construct a family of
local ABCs and explain their implementation in a high-order finite element context. Numerical simulations
allow to validate the accuracy of the ABCs, and to give recommendations for the tuning of their parameters.

Keywords: Dirichlet-to-Neumann operator, pseudo-differential calculus, local absorbing boundary
conditions, heterogeneous time-harmonic wave propagation, finite element method.
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1. Introduction

The design of accurate spatial truncation techniques for solving wave propagation problems in unbounded
domains is an active area of research, as the introduction of a fictitious boundary is mandatory for numerical
methods like finite elements or finite volumes that rely on a volume discretization of the problem. The exact
non-reflecting operator at the fictitious boundary is the well-known Dirichlet-to-Neumann (DtN) operator,
which is unfortunately non-local and thus difficult and costly to implement in a numerical scheme [1, 2, 3].
Alternatives include Absorbing or Artificial Boundary Conditions (ABC) [1, 3, 4, 5, 6, 7, 8], Perfectly Matched
Layers (PML) [9, 10, 11, 12, 13] and infinite elements [14, 15].

Regarding local ABCs built as approximations of the DtN map, tremendous progress has been made
since the pioneering work of Engquist and Madja [4], fostered by the need for ABCs in a broader range of
geometrical and physical configurations. In particular, for time-harmonic wave problems governed by the
Helmholtz equation, very effective and numerically cheap ABCs are now available for homogeneous wave
problems in many situations (see e.g. [16, 17, 18, 19, 20]). Fewer works have tackled the problem of building
ABCs for heterogeneous media since the wave propagation problem is more complex and analytic/exact
solutions are not available for general situations.

Among the works related to heterogeneous problems, the early study of Engquist and Madja [5] compares
the “frozen” with the “variable” coefficients technique. While the former uses local values of the heterogeneous
field, the latter explicitly incorporates its spatial variation to enhance the quality of the ABC. Their analytic
case is revisited in this work with a high-order finite element scheme. Approximations of the DtN map are
built in [21, 22, 23] for heterogeneous and non-linear [24] problems following the rules of pseudo-differential
calculus. They have in common that accounting for the spatial variation of the heterogeneity in the ABC
design increases its accuracy. Stability and well-posedness of such conditions are studied in [21, 25], but this
topic is not addressed in the present study. In the work of Hagstrom et al. [26, section 6], an extension to the
complete radiation condition [19, 27] is adapted for layered, stratified and continuous transverse heterogeneous
media where the ABC tuning coefficients associated to the auxiliary equations depends on the local value of
the heterogeneity. Alternative techniques combine the ABC with the PML methods [28, 29, 30] and have good
potential to be effective in heterogeneous situations. More general methods include root-finding algorithm
[31] or the construction of the ABC at the discrete level [32]. A rigorous comparison between these methods
in heterogeneous situations is challenging.

In this paper we focus on ABCs for heterogeneous time-harmonic acoustic problems, motivated by indus-
trial applications linked to sound radiation in aeroengines. Such problems can be described by a scalar wave
equation in which acoustic waves are convected by a potential, isentropic, compressible mean flow [33]. The
propagation is influenced by a variable speed of sound c0(x), density ρ0(x) and mean flow velocity v0(x). In
addition, the work is ultimately motivated by the development of efficient and converging optimized Schwarz
Domain Decomposition Methods (DDM) [34, 35, 36, 37, 38, 39, 40]. Indeed, in this class of hybrid solvers,
it is well-known that accurate ABCs used as transmitting boundary conditions at the interfaces between
the smaller sub-domains act as preconditioners for the iterative part of the DDM [35, 36, 38]. This is rel-
atively well-understood for the homogeneous Helmholtz equation but needs further developments for the
heterogeneous Helmholtz equation, and in particular for large scale flow acoustics simulations for industrial
applications [41].
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To design ABCs for the heterogeneous Helmholtz equation we adopt the Engquist and Majda methodology
to build families of local ABCs that can be easily implemented in a high-order finite element solver. The
strength of the approach is that an asymptotic expansion of the DtN operator for any PDE with smooth
variable coefficients can be explicitly computed thanks to microlocal calculus rules for pseudodifferential
operators [42]. This implies that increasing order approximations of the DtN operator can be obtained, and
accurately computed locally thanks to a second level of approximation related to Taylor or Padé expansions.
The method is general and applicable to arbitrary convex boundaries [16]. However, a detailed numerical
analysis is required to understand whether the method indeed leads to an accurate truncation technique, or
when it can fail.

The paper is organized as follows. Section 2 introduces the generic procedure for the derivation of the
DtN symbolic asymptotic expansion applied to the half-space heterogeneous Helmholtz operator. We next
analyze in detail three situations of interest: the propagation in a duct with a longitudinal variation of the
speed of sound in Section 3, the propagation in a non-uniform mean flow using a convected wave operator in
Section 4, and the propagation in a duct with a transverse variation of the speed of sound in Section 5. For
each case, we develop the construction of families of local ABCs following the process described in Section
2 and explain their implementation in a high-order finite element context. Numerical simulations allow to
validate the accuracy of the ABCs, and to give recommendations for the choice of their parameters. Finally,
conclusions and perspectives are given in Section 6.

2. DtN operator for the heterogeneous Helmholtz problem

Let us define the two-dimensional half-space Ω = {x = (x, y) ∈ R2;x ≤ L} with straight vertical fictitious

boundary Γ = {x = L}, L > 0. We then look for a formal derivation of the DtN operator Λ̃+ at Γ for
the Helmholtz problem in Ω with a variable density ρ0(x) = ρ0(x, y) and speed of sound c0(x) = c0(x, y).
More precisely, the heterogeneous Helmholtz equation (for the eiωt convention with time frequency ω > 0) is
associated to the partial differential operator

H(x, y, ∂x, ∂y, ω) = ρ−1
0 ∂x(ρ0∂x) + ρ−1

0 ∂y(ρ0∂y) + ω2c−2
0 . (2.1)

The operator Λ̃+ is then defined as

Λ̃+ : H1/2(Γ)→ H−1/2(Γ)

u|Γ 7−→ ∂nu|Γ = −iΛ̃+u|Γ
, (2.2)

where n = (1, 0) is the outwardly directed unit normal vector to the straight boundary Γ, which means that
∂n = ∂x. All the developments that follow could readily be extended to the 3D case, but would require
further algebraic computations leading to more complicated formulas to analyze. The analysis could also be
extended to the case of a curved convex boundary based on the tangent plane approximation [43].

We formally compute the DtN operator in the framework of microlocal analysis by using the tools of
pseudo-differential operator calculus [42], as initiated by Engquist and Majda [4] for hyperbolic systems.
To this end, we consider that the density ρ0 and the speed of sound c0 are smooth functions of the spatial
variable x. In addition, since we will work with classical pseudo-differential operators, it is well-known that
the analysis is not valid for grazing waves and would require the introduction of new classes of operators
(like e.g. Gevrey classes [44]). This specific point will be clarified later when we enter into the details of the
concrete cases.

2.1. Preliminary definitions

A partial differential operator may be defined as [42]

P(x, ∂x) =
∑
|α|≤m

(−i)αaα(x)∂αx , (2.3)

with x ∈ Rd (d = 2 here), α = (α1, . . . , αd) ∈ Nd a multi-index, |α| =
∑d
j=1 αj and m the order of the

operator P. We define its symbol p to be the polynomial

p(x, ξ) =
∑
|α|≤m

aα(x)ξα, (2.4)
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setting ξ ∈ Rd and ξα = ξα1
1 . . . ξαdd . If we introduce the Fourier transform of a smooth function u of compact

support in Rd

û(ξ) =

∫
Rd
u(x)e−ix·ξdx, (2.5)

where the property (̂∂αx u)(ξ) = (−iξ)αû(ξ) can be justified, a partial differential operator can be seen as the
inverse Fourier representation of its symbol

P(x, ∂x)u(x) =
1

(2π)d

∫
Rd
eix·ξp(x, ξ)û(ξ)dξ. (2.6)

We next introduce the principal symbol σ(P) of an operator P , which is the highest order homogeneous term
in ξ

σ(P)(x, ξ) =
∑
|α|=m

aα(x)ξα. (2.7)

This point of view allows to work with a wide range of operators, where the symbol is not necessarily
a polynomial, but a smooth function p = p(x, ξ). This leads to the broad theory of pseudo-differential
operators [42]. We will denote by P = Op(p) ∈ OPSm the pseudo-differential operator of order m associated
to the symbol p. Roughly speaking, the symbol should have a polynomial growth that equals the order of
the operator when |ξ| → ∞. Sets of admissible symbols were introduced by Hörmander [45] and we will use
the set of classical symbols Smcl , that are defined by the estimate∣∣∂βx∂αξ p(x, ξ)

∣∣ ≤ C(1 + |ξ|)m−|α|, ∀(x, ξ) ∈ K × Rd,

for each pair of multi-indices α,β, a compact set K of Rd and a constant C = C(α,β,K) ∈ R. We make
the correspondence p ∈ Smcl ⇔ P ∈ OPSm. Finally, we define OPS−∞ =

⋂
m∈R OPSm to be the set of

regularizing operators. This corresponds to operators with a smooth integral kernel, for which the symbol
decays faster than any polynomial. In practice, algebraic computations can be performed at the symbol level
to construct approximations of increasing orders of the DtN operator. We only give the necessary formula
for the computations and refer to [42] for more details on the underlying theory.

2.2. Symbols computation

The first step to derive the DtN operator for the heterogeneous Helmholtz problem consists in splitting
the Helmholtz operator into two operators that characterize the forward and backward parts of the wave
field u. According to Nirenberg’s factorisation theorem [46], there exist two pseudo-differential operators
Λ± = Λ±(x, y, ∂y) of order +1 such that

H = (∂x + iΛ−)(∂x + iΛ+) mod OPS−∞, (2.8)

where the equality holds modulo a regularizing pseudo-differential operator. This reformulation enlightens
the role of the DtN operator, which is the trace of the outgoing (or ingoing) characteristic of the wave on the
boundary Γ. Equation (2.8) can be seen as a reformulation of the Helmholtz equation as two “one-way” wave
equations. In a microlocal sense, the solution to the Helmholtz problem is given by the operators (Λ+,Λ−).
For the constant coefficients case and a plane wave of the form ei(ωt−kxx), one could directly infer and verify
that

Λ± = ±kx, kx =
√
ω2c−2

0 + ∂2
y . (2.9)

This is a square-root, pseudo-differential operator of order +1. However, we will see that it is only an
approximation in the heterogeneous case. Rather than looking for the DtN map directly in its operator form,
a more suitable approach is to look for its symbol. We turn back to the Helmholtz operator and develop the
factorisation (2.8) as

H = ∂2
x + i∂x

(
Λ+
)

+ iΛ−∂x − Λ−Λ+ mod OPS−∞. (2.10)
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From definition (2.6), we obtain for the wave field u

∂x(Λ+u) = (2π)−1∂x

(∫
R
eiyξλ+û dξ

)
= (2π)−1

∫
R
eiyξ

(
∂xλ

+û+ λ+∂xû
)
dξ (2.11)

= Op
{
∂xλ

+
}
u+ Λ+∂xu, (2.12)

where λ+ is the symbol of Λ+. The Helmholtz operator can be recast as

H = ∂2
x + i

(
Λ+ + Λ−

)
∂x + iOp

{
∂xλ

+
}
− Λ−Λ+ mod OPS−∞. (2.13)

With this form, one is able to identify in (2.1) and (2.13) the first and zeroth order x-derivatives, which leads
to the system {

Λ+ + Λ− = −iρ−1
0 ∂x(ρ0)

−Λ−Λ+ + iOp {∂xλ+} = ω2c−2
0 + ρ−1

0 ∂y(ρ0∂y)
, (2.14)

from which we can eliminate Λ− and obtain an equation for the outgoing operator Λ+

(Λ+)2 + iρ−1
0 ∂x(ρ0)Λ+ + iOp

{
∂xλ

+
}

= ω2c−2
0 + ρ−1

0 ∂y(ρ0∂y). (2.15)

This equation is still a reformulation of the initial problem. The simplification occurs thanks to the asymptotic
expansion property of classical symbols. Since Λ+ is of order +1, the asymptotic expansion writes

λ+ ∼
∞∑

j=−1

λ+
−j = λ+

1 + λ+
0 + λ+

−1 + · · ·

where each symbol λ+
−j is homogeneous of order −j in (ω/c0, ξ), and the equivalence class ∼ has the meaning

∀m ≥ −1, λ+ −
m∑

j=−1

λ+
−j ∈ S

−(m+1)
cl .

The asymptotic expansion gives a notion of “convergence” for pseudo-differential operators and allows to
compute successive approximations of their symbol with respect to their homogeneity order. If we express
(2.15) in its symbolic form, one obtains

(λ+)2 + iρ−1
0 ∂x(ρ0)λ+ + i∂xλ

+ = ω2c−2
0 − ξ2 − iξρ−1

0 ∂y(ρ0). (2.16)

There are well-defined calculus rules for classical symbols allowing them to be obtained in a recursive manner
[16]. For instance, the composition rule for pseudo-differential operators [42] can be used to compute the
square of the symbol λ+, and further sort the terms by their decaying homogeneity degree

(λ+)2 ∼
∑
α≥0

(−i)α

α!
∂αξ λ

+∂αy λ
+ = (λ+

1 )2 + 2λ+
0 λ

+
1 − i∂ξλ

+
1 ∂yλ

+
1 mod S0

cl. (2.17)

The identification of the second-order homogeneous terms in (2.16) yields a choice for the principal symbol

λ+
1 =

√
ω2c−2

0 − ξ2, (2.18)

which is directly linked to the operator (2.9) in the constant coefficients case. Alternatively, the principal
symbol could be defined in a inhomogeneous manner by identifying the second order terms in the left-hand
side of (2.16) only

λ+
1 =

√
ω2c−2

0 − ξ2 − iξρ−1
0 ∂y(ρ0), (2.19)

from which one may associate the operator

Λ+
1 =

√
ω2c−2

0 + ρ−1
0 ∂y(ρ0∂y). (2.20)
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The golden rule is to ensure that Re(λ+
1 ) ≥ 0 in the high frequency limit ω → +∞, such that the wave is

outgoing. Although both choices could be valid, we will use expression (2.18) to be the principal symbol.
Once it is fixed, the lower order symbols are uniquely determined. For a transverse heterogeneous medium
(no x-dependence), Nirenberg’s factorization theorem suggests that expression (2.20) is the most appropriate
operator to represent the DtN map. This will be emphasized and confirmed in Section 5. For the choice of
λ+

1 (2.18) we identify the first-order homogeneous terms from relation (2.16) and get the zeroth order symbol
λ+

0 satisfying

2λ+
0 λ

+
1 − i∂ξλ

+
1 ∂yλ

+
1 + iρ−1

0 ∂x(ρ0)λ+
1 + i∂xλ

+
1 = −iξρ−1

0 ∂y(ρ0). (2.21)

Standard calculus rules lead to

∂ξλ
+
1 = − ξ

λ+
1

, ∂xλ
+
1 =

ω2∂x(c−2
0 )

2λ+
1

, (2.22)

and similarly for the y-derivative. It results the zeroth order symbol

λ+
0 = −i

(
∂x(ρ0)

2ρ0
+
ξ∂y(ρ0)

2ρ0λ
+
1

+
ω2∂x(c−2

0 )

4(λ+
1 )2

+
ξω2∂y(c−2

0 )

4(λ+
1 )3

)
. (2.23)

There are four terms of decreasing powers of λ+
1 . It means that the density variations have the largest

impact on the wave behaviour. If Im(λ+
1 ) = 0 holds, we can interpret the zeroth order symbol as an

amplitude correction to the wave. In a similar manner, the rest of the symbols can formally be obtained from
the composition rule.

2.3. Microlocal regimes

The criterion Re(λ+
1 ) ≥ 0 defines the cone of propagation for outgoing waves and characterizes the

hyperbolic zone in microlocal analysis [47]. It means that only propagative modes are modeled (low-frequency
spatial modes). When the frequency is such that ωc−1

0 ≈ |ξ|, the wave is said to be in the grazing zone, and
the current approach is a priori not valid. We will see that this situation introduces a singularity for higher
order symbols. The last situation ωc−1

0 < |ξ| corresponds to the elliptic zone and describes evanescent modes.
One may extend the present analysis to the elliptic regime by selecting the branch-cut of the principal symbol
to be along the negative real axis such that

λ+
1 = −i

√
ξ2 − ω2c−2

0 . (2.24)

Both propagative and evanescent modes can be taken into account if we rewrite the square-root as suggested
by Milinazzo et al. [48]. The idea was introduced for parabolic equations in underwater acoustics, and
adapted to ABCs for homogeneous Helmholtz problems in [43]. It consists in rotating the branch-cut of the
square-root by an angle α

λ+
1 = eiα/2

√
e−iα(ω2c−2

0 − ξ2), (2.25)

such as the hyperbolic zone is fully captured when α = 0 and the elliptic zone when α = −π. The angle
α can be seen as a parameter to be selected in order to find a good balance between the modeling of the
propagative and evanescent modes.

2.4. Summary

We can build an approximate surface DtN operator Λ̃+
M , called DtNM , by i) keeping the M first symbols

in the sum

∂nu = −iΛ+
Mu, Λ+

M =

M−2∑
j=−1

Op(λ+
−j), (2.26)

and then ii) taking the trace on the boundary Γ. In the following, to simplify the notations, we forget the
tilde ˜ and the plus sign + when considering the trace on the boundary of the outgoing operator. As an
example, the surface operator Λ̃+

M is denoted by ΛM .
We will now consider some simplified situations and explicitly build local ABCs for three practical situa-

tions of increasing difficulty:

6



• the propagation in a duct with a longitudinal variation of the speed of sound;

• the propagation in a non-uniform mean flow using the linearized potential operator;

• the propagation in a duct with a transverse variation of the speed of sound and density.

These three cases allow to numerically analyze the strengths but also the inherent limitations of the developed
approach.

3. Longitudinal heterogeneous problem

We first analyze the method in the case of a longitudinal heterogeneous duct problem. More precisely,
we consider the situation of a constant density set to unity (ρ0 = 1) and a speed of sound varying along the
propagation direction, namely c0(x, y) = c0(x). We specifically revisit the case of a linear profile

c−2
0 (x) = ax+ b, (3.1)

since an analytic expression for the DtN operator is available [5, 21]. We always suppose a 6= 0, otherwise
we have the homogeneous case.

3.1. Symbols and associated operators

We approximate the DtN symbol by the first two terms of the asymptotic expansion

λ+ ≈ λ+
1 + λ+

0 =

√
ω2c−2

0 − ξ2 − i ω2∂x(c−2
0 )

4(ω2c−2
0 − ξ2)

. (3.2)

The next step is to go back at the operator level by inverse Fourier transform. We propose the first- and
second-order DtNM operators respectively defined by

Λ1 =

√
ω2c−2

0 + ∆Γ mod OPS−2, (3.3)

Λ2 =

√
ω2c−2

0 + ∆Γ −
iω2∂x(c−2

0 )

4
(ω2c−2

0 + ∆Γ)−1 mod OPS−3, (3.4)

where ∆Γ = ∂2
y is the Laplace-Beltrami operator along the transverse direction y. By construction, the

symbols of Λ1 and Λ2 are exactly λ+
1 and λ+

1 + λ+
0 , respectively. This is because the symbols are evaluated

at x = L and thus do not depend on the transverse variable y, leading to a natural choice for the operators.
These operators are still non-local but follow a hierarchic degree of regularity with respect to the exact DtN.
Note that the regularity estimate for the second-order condition Λ2 is based on the next symbol λ+

−1

λ+
−1 =

5ω4
[
∂x(c−2

0 )
]2

32
(
λ+

1

)5 − ω2∂2
x(c−2

0 )

8
(
λ+

1

)3 , (3.5)

which corresponds to an operator in OPS−5 for a linear profile.

3.2. Construction of the ABCs

To derive an ABC that can be easily implemented in a finite element method, we need an additional
approximation of the non-local operators DtNM to represent them through local partial differential operators.
This can be achieved thanks to Taylor and Padé approximants, with the “angle of incidence” (ξc0/ω) as a
small parameter.

Let us start with the Taylor expansion. From the first symbols, we can build some so-called local complete
radiation boundary conditions as defined in [16]. For example, we can compute the second-order Taylor
expansion (denoted by (·)2) of the first four symbols

Λ2
4 = Op

 2∑
j=−1

(λ+
−j)2

 , on Γ. (3.6)
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With the help of the Python library SymPy [49], we formally compute the Taylor approximation with respect
to (c0ξ/ω), leading to the local condition

Λ2
4 =

(
ω

c0
− i∂x(c−2

0 )

4c−2
0

+
5
[
∂x(c−2

0 )
]2

32ωc−5
0

+ i
15
[
∂x(c−2

0 )
]3

64ω2c−8
0

)
(3.7)

+

(
c0
2ω

+ i
∂x(c−2

0 )

4ω2c−4
0

−
25
[
∂x(c−2

0 )
]2

64ω3c−7
0

− i
15
[
∂x(c−2

0 )
]3

16ω4c−10
0

)
∆Γ, (3.8)

where we have set the second- and third-order derivatives of c−2
0 to zero for a linear profile. The Python code

used for the formal derivation of Λ2
4 is given in Appendix B. Note that any lower order condition can easily

be recovered by dropping some terms. The above condition is one of the most accurate ABCs that can be
directly built with standard (mass and stiffness) finite element matrices, but as we will see, is less accurate
than the Padé-based conditions. In the following, it will be denoted by ABC2

4.
The Padé expansion, which is expected to be more robust than its Taylor counterpart, requires an ad-

ditional computational cost. We only consider the approximation of the first two symbols, and rewrite the
second-order nonlocal operator DtN2 as

Λ2 = k0

√
1 +X − i∂x(c−2

0 )

4c−2
0

(1 +X)−1, k0 = ω/c0, X = ∆Γ/k
2
0. (3.9)

The usual Padé approximation for the square root
√

1 +X, X → 0 leads to

Λ2 ≈ k0

(
1 +

N∑
`=1

(a`X) (1 + b`X)
−1

)
− i∂x(c−2

0 )

4c−2
0

(1 +X)−1, (3.10)

a` =
2

2N + 1
sin2

(
`π

2N + 1

)
, b` = cos2

(
`π

2N + 1

)
. (3.11)

This condition is still non-local because of the inverse operators. We use auxiliary functions to give them
a local, hence sparse discrete representation. A total of N auxiliary functions is required for the Padé-type
ABC based on Λ1 since it is defined by the square-root operator, and N + 1 functions for the ABC related
to Λ2. The implementation is detailed in Section 3.3.

Until now, the proposed conditions are only valid in the hyperbolic zone, whenever the square-root term
of the principal symbol is strictly positive. Thanks to the branch-cut rotation introduced in (2.25), the
square-root operator becomes

eiα/2
√

1 + z, z = e−iα(1 +X)− 1. (3.12)

The Taylor approximants are extended as

√
1 + z ≈ eiα/2

N∑
`=0

(
1/2

`

)(
(1 + z)e−iα − 1

)`
, (3.13)

and the Padé ones as

√
1 + z ≈ C0 +

N∑
`=1

A`z

1 +B`z
, (3.14)

C0 = eı
α
2 RN

(
e−ıα − 1

)
, A` =

e−
iα
2 a`

(1 + b` (e−ıα − 1))
2 , B` =

e−ıαb`
1 + b` (e−ıα − 1)

. (3.15)

In the following, the Padé-type ABC with N terms and rotation angle α, based on M symbols, is denoted
by ABCN,αM .

The grazing zone leads to the situation ξ2 ≈ ω2c−2
0 , which introduces an explicit singularity for higher

order symbols. A workaround is to complexify the frequency ω in the denominator of the zeroth order symbol
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by adding a local damping term ε near the singularity, i.e. we set: ωε = ω − iε. Thus λ+
0 is modified to be

the regularized symbol

λ+
0 = −i ω2∂x(c−2

0 )

4(ω2
εc
−2
0 − ξ2)

. (3.16)

In the specific case of a linear profile, it is possible to choose ε such that it minimizes the reflection coefficient
at the turning point. The optimal value εopt is derived in Appendix A and is inspired from the approach
used in [43]. In practice, this zone is expected to be limited to isolated frequencies.

3.3. Description of the test case

For the numerical test case, we choose a two-dimensional straight duct problem as shown in Figure 1
with a strictly positive, linear speed of sound profile. The domain Ω represents a connected semi-infinite
duct that has been truncated by a straight boundary. Since they involve the Laplace-Beltrami operator on
Γ, the introduced ABCs could be applied to any smooth convex geometry by considering a tangent plane
approximation. However, analytic and/or references test cases for heterogeneous Helmholtz problems are
scarce and we therefore focus on this simpler situation.

wave direction

c−2
0 (x) = ax+ b

∂nu = 0, Γ2

Γ1

∂nu = g
Γ3

∂nu = −iΛu

0

Ω = [0, L] × [0, H]

H

L x

y

Figure 1: Sketch of the numerical case: two-dimensional acoustic propagation in a heterogeneous duct.

For a linear profile, the heterogeneous Helmholtz equation

∂2
xu+ ∂2

yu+ k2
0u = 0, k0 = ω/c0, c−2

0 (x) = ax+ b, (3.17)

can be explicitly solved by separation of variables. The exact outgoing solution uex (with the eiωt convention)
for a given mode n and a strictly positive increasing speed of sound profile is given thanks to Airy’s function
[50] as

uex(x, y) = cos(kyy)Ai

(
e−

2iπ
3
k2
y − k2

0

(aω2)2/3

)
, ky =

nπ

H
, n ∈ N. (3.18)

Note that the choice of a decreasing profile is also possible but is more challenging to set up numerically (see
[50], pp. 122-125). The x-derivative of the exact solution is

∂xuex(x, y) = −e− 2iπ
3 (aω2)1/3 cos(kyy)Ai’

(
e−

2iπ
3
k2
y − k2

0

(aω2)2/3

)
, (3.19)

such that the exact DtN operator on Γ3 is given by

Λ = −ie− 2iπ
3 (aω2)1/3 Ai’(z)

Ai(z)
, z = e−

2iπ
3
k2
y − ω2(aL+ b)

(aω2)2/3
, (3.20)

with L being the x-position of the fictitious boundary. Note the special situation whenever

k2
y = ω2(ax+ b), (3.21)
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which we may solve for x or ω. When this specific situation occurs, the principal symbol cancels. The
nature of the wave changes and shows a transition from cut-off to cut-on (or vice versa). The x-location
where equation (3.21) holds is called a turning point [51] and denoted by xt. Next, we write the variational
formulation of the boundary value problem for the exact DtN operator: find u ∈ H1(Ω) such that

∀v ∈ H1(Ω),

∫
Ω

{∇u · ∇v − k2
0u v} dΩ + i

∫
Γ3

Λu v dΓ3 =

∫
Γ1

g v dΓ1, (3.22)

and g is given by the normal derivative of the exact solution at x = 0

g = e−
2iπ
3 (aω2)1/3 cos(kyy)Ai’

(
e−

2iπ
3
k2
y − bω2

(aω2)2/3

)
. (3.23)

We now present how to implement the Padé-type ABCs in a finite element context. The auxiliary
variables related to the principal and the zeroth order symbols are respectively denoted by (ϕ1, · · · , ϕN ) and

ψ. The weak form of ABCN,α2 given by (3.9) together with (3.14)-(3.15) leads to the coupled system: for
(u, ϕ1, · · · , ϕN , ψ) ∈ H1(Γ3)×H1(Γ3)N ×H1(Γ3)

i

∫
Γ3

ABCN,α2 u v dΓ3 = i

∫
Γ3

k0C0u v dΓ3 − i
∫

Γ3

A`
k0
∇Γ3ϕ` · ∇Γ3v dΓ3 +

∫
Γ3

∂x(c−2
0 )

4c−2
0

ψ v dΓ3, (3.24)

∀v` ∈ H1(Γ3),

∫
Γ3

k2
0ϕ` v` dΓ3 −B`

∫
Γ3

∇Γ3ϕ` · ∇Γ3v` dΓ3 =

∫
Γ3

k2
0u v` dΓ3, (3.25)

∀µ ∈ H1(Γ3),

∫
Γ3

k2
0ψ µdΓ3 −

∫
Γ3

∇Γ3ψ · ∇Γ3µdΓ3 =

∫
Γ3

k2
0uµ dΓ3. (3.26)

In its discrete matrix form, the complex-valued sparse linear system for the global problem is similar to (3.22)

but includes the ABCN,α2 terms (3.24)-(3.26) of size [ndof,Ω + (N + 1)ndof,Γ3
]× [ndof,Ω + (N + 1)ndof,Γ3

]

AU = F , U =


u
ϕ1
...
ϕN
ψ

 , F =


−g
0
...
0
0

 , (3.27)

where the FEM matrix has a quasi block-diagonal structure

A =



K− k2
0M + ik0C0MΓ3

−iA1

k0
KΓ3

· · · −iANk0 KΓ3

∂x(c−2
0 )

4c−2
0

MΓ3

−k2
0MΓ3

k2
0MΓ3

−B1KΓ3
0 · · · 0

... 0
. . . 0

...

−k2
0MΓ3

... 0 k2
0MΓ3 −BNKΓ3 0

−k2
0MΓ3

0 · · · 0 k2
0MΓ3

−KΓ3


. (3.28)

One can remove the last row and column to obtain the matrix associated to ABCN,α1 , which is of size
[ndof,Ω + Nndof,Γ3

] × [ndof,Ω + Nndof,Γ3
]. In the above notations, the number of degrees of freedom in Ω

(respectively on Γ3) is denoted by ndof,Ω (respectively ndof,Γ3). The mass and stiffness matrices for the
volume problem are M and K. For the surface Γ3, the mass and stiffness matrices are MΓ3 and KΓ3 ,
respectively.

3.4. Numerical results

Let us now study the numerical behavior of the ABCs and the effect of the various parameters. We
use a high-order finite element scheme equipped with a basis of integrated Legendre polynomials [52] to
discretize the weak formulations. Such a scheme allows to effectively control the interpolation and dispersion
errors associated to Helmholtz problems [53], and is well-suited for testing the accuracy limits of the ABCs.
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The implementation uses the GmshFEM [54] finite element library and is available online 1 under open-source
license. The ABCs effectiveness is measured by the relative L2-error (in %) in the domain Ω = [0, L]× [0, H]
as

EL2 = 100
‖uex − uh‖L2(Ω)

‖uex‖L2(Ω)

, (3.29)

where uh refers to the discretized solution. As a reference, we consider the numerical solution obtained with
the exact DtN operator (3.20), such that the remaining error is only due to the finite element discretization.

The speed of sound profile is assumed strictly increasing and we use c−2
0 (x) = 5x+ 0.1. The duct is taken

of length L = 1 and height H = 0.5. The mesh is generated by Gmsh [55] and is composed of linear quadrangle
elements Q4 of size h = 1/40. The p-FEM shape function order is fixed to p = 6, and the integration on the
reference element is computed by a tensorised Gauss quadrature rule.

For the first experiment, we set up the single mode n = 3 on the input left boundary Γ1. We present
in Figure 2 the real part of the reference numerical solution for single frequencies and the location of the
turning point as a function of ω.

ω = 10, xt = 0.69

ω = 60, xt < 0

ω = 20, xt = 0.16

xt(ω)

Figure 2: Real part of the reference numerical solution uh for fixed frequencies ω and location of the turning point xt.

We can distinguish three frequency regimes

• if xt > L, the mode is evanescent;

• if 0 < xt < L, the mode shows an evanescent to propagative transition within the duct. The mode
becomes cut-on at x = xt;

• if xt < 0, the mode is propagative.

We report in Figure 3 the relative L2-error for the Taylor and Padé-based ABCs of different orders M as
a function of the input frequency ω. The parameters α and ε are for now fixed to zero, and will be gradually
turned on throughout the numerical experiments. As expected, adding symbols in the ABCs results in a

1https://gitlab.onelab.info/gmsh/fem
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decrease of the error. It results from a better DtN approximation which takes into account the speed of sound
variation ∂x(c−2

0 ). Regarding Taylor-based conditions, ABC2
4 reaches a very good accuracy at no additional

cost. Moreover, the contribution from the zeroth order symbol has the highest impact on the ABC accuracy.
For Padé-based conditions, ABCN,01 reaches an error plateau as N grows. A plateau is also reached for the

condition ABCN,02 , but is approximately two orders of magnitude lower than ABCN,01 . This is in contrast to
the homogeneous case, where N can be increased up to the reference error precision. For such a heterogeneous
case, a higher number of auxiliary fields N adds high-order terms to the ABC that do not match the full
DtN operator, but only its truncated version DtNM . This is confirmed by the numerical tests, since each
condition reaches an error that is consistent with the order M of the ABC. A proper localization procedure
ensures that the maximal efficiency of the ABC is attained. Note that in this situation, the duct is large
enough such that the low frequencies associated to evanescent modes are damped regardless of the ABC and
the parameter α.

10 20 30 40 50 60 70 80 90 100

10−7

10−5

10−3

10−1

101

ω

E L
2
(%

)

ABC0
1

ABC2
1

ABC2
4

10 20 30 40 50 60 70 80 90 100

10−7

10−5

10−3

10−1

101

ω

ABC1,0
1

ABC2,0
1

ABC2,0
2

ABC3,0
2

ABC5,0
2

Figure 3: Relative L2-error for Taylor-based (left) and Padé-based (right) ABCs as a function of the input frequency ω for α = 0
and ε = 0. Reference solution( ).

In the second experiment, we analyze more precisely the low frequency regime. We fix the frequency ω
and vary the position of the ABC, that is the length of the duct L. The mode order is chosen to be n = 5.
Thanks to the turning point relation (3.21), we select the frequency such that xt = 0.5, giving ω ≈ 19.5. The
mode is evanescent at the input boundary and turns into propagative if the ABC is located at L > xt. The
ABC location is varied by adding a single mesh layer to the duct for each computation. The rotation angle
α is now turned on.

We focus here on the most accurate condition ABCN,α2 . In Figure 4a, the influence of the angle α is
consistent with its theoretical interpretation: a large angle improves the attenuation of evanescent modes
while deteriorating the attenuation of propagative modes. The latter effect can be reduced by taking a large
number of auxiliary fields N thus improving the localization of the principal symbol, as shown in Figure 4c.
For a sufficiently large N (here N = 6), there is no more gain in the accuracy of ABCN,α2 and the error
plateau corresponding to the expected DtN approximation is attained.

However at L = 0.5, the ABC is located at the turning point and the condition ABCN,α2 clearly shows
a lack of accuracy. This is most likely linked to the inverse operator arising as a corrective term because
such a behaviour is not observed for the condition ABCN,α1 . As a workaround, we turn on the parameter

ε in ABCN,α2 , see Figure 4b. For conciseness, the parameter ε does not appear in the notation ABCN,α2

but is introduced thanks to ωε = ω − iε. The optimal value obtained theoretically in Appendix A results
in a smaller error at the turning point, and improves the ABC efficiency in the propagative low frequency
regime. Another value of ε could be more efficient globally, and more advanced strategies for the optimization
procedure could be conducted. The choice for ε is however case dependent, and such an optimal value is in
practice difficult to determine a priori.

Note that Taylor-based conditions can also be designed while rotating the branch-cut of the principal
symbol. As ABCs, such complexified Taylor conditions are less robust than Padé-based conditions, which has
been confirmed by our numerical experiments. Nonetheless, complexified Taylor ABCs might be very effective
as a transmission condition for domain decomposition methods [41], and can be contructed numerically at
no additional cost. Such conditions will be tested in a domain decomposition framework for heterogeneous
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problems in the future.
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(a) Variation of the angle α for ABC4,α
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Figure 4: Influence of the tuning parameters for the Padé-based conditions ABCN,α2 on the relative L2-error when varying the
ABC location L. Reference solution( ).

In more realistic situations, it is not always possible to predict whether the wave hitting the interface will
be propagative or evanescent. Therefore, we recommend to rotate the branch-cut of the principal symbol
before the localization procedure. A sufficiently large number of auxiliary fields N should be used in order
to ensure a proper localization of the square-root operator, especially for a large angle α. For high frequency
applications, we recommend to keep α in the range [0,−π/2] and increase N with α, e.g. α = −π/2 with
N = 6.

A stability analysis remains to be conducted for the introduced ABCs. The stability of Padé-based ABC
have been addressed for homogeneous problems in [56], but the precise effect of the rotation angle α remains
to be examined.

4. The convected wave operator

We focus in this section on a second more complex situation, that is modal propagation in a non-uniform
mean flow. Here, we only analyze the case of Padé-type ABCs which have been shown to be more accurate
than ABCs based on Taylor expansion in the previous section. In two-dimensions, the acoustic field is
described by the general convected wave operator in the frequency domain

L(x, ∂x, ω) =
D0

Dt

(
1

c20

D0

Dt

)
− ρ−1

0 ∇ · (ρ0∇),
D0

Dt
= iω + v0 · ∇, v0 = (vx, vy), (4.1)
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which is commonly used in flow acoustics [57, 51, 58, 59]. It governs the acoustic velocity potential u

L(x, ∂x, ω)u = 0,

and the acoustic velocity is v = ∇u. The acoustic pressure variable p can be recovered through the relation

p = −ρ0
D0

Dt
u. (4.2)

The mean flow quantities v0, ρ0, c0 are steady and should satisfy the physical relations of a compressible,
irrotational and homentropic flow:

• mass conservation: ∇ · (ρ0v0) = 0,

• Bernoulli’s equation:
v2
0

2 +
c20
γ−1 = K1, γ = 1.4 being the adiabatic constant in dry air,

• isentropic state equation for a perfect gas: c20 = K2γρ
γ−1
0 .

For our purpose of testing ABCs, we would like to extend the straight duct situation of the previous section
and consider a non-uniform flow along the x-direction (here the direction of propagation). Unfortunately
this situation is only physically relevant for a duct of variable cross-section, and doing so would break the
separable modal structure of the solution. Instead, we choose to drop the assumption of the flow to be
isentropic. Although being physically incorrect, the model remains relatively simple and is still relevant to
derive and test the ABCs. Future work will investigate more realistic situations with two-dimensional flows.

For a variable mean flow along the x-direction, the convected wave operator takes the form

L(x, ∂x, ω) = −ω2c−2
0 + 2ivxωc

−2
0 ∂x + iωvx∂x(c−2

0 ) + vx∂x(vxc
−2
0 ∂x)− ρ−1

0 ∇ · (ρ0∇). (4.3)

We use the local wavenumber k0 = ω/c0, the velocity variable Mx = vx/c0 and recast the operator as

L(x, ∂x, ω) = (M2
x − 1)∂2

x − ∂2
y +

[
2ik0Mx − ρ−1

0 ∂x(ρ0) + vx∂x(vxc
−2
0 )
]
∂x − k2

0 + iωvx∂x(c−2
0 ). (4.4)

Let us remark that [60] presents a closely related one-dimensional model. Compared to the uniform mean
flow situation, the non-uniformity adds two first-order terms to the operator and a zeroth order term that
couples the frequency and the mean flow. In this model, a decrease in the flow velocity is balanced by a
larger speed of sound and density. The latter can be interpreted from the mass conservation relation in
one-dimension

∂x(ρ0)ρ−1
0 = −∂x(vx)v−1

x . (4.5)

We further impose the restrictions of a non-zero subsonic mean flow 0 < |Mx| < 1, a positive density ρ0 > 0
and speed of sound c0 > 0. Then, it has been shown in e.g. [61] that equation (4.1) with a suitable outgoing
radiation condition is a problem of Fredholm type.

4.1. Symbols computation

As done throughout the document, the objective is to compute the first terms from the asymptotic
expansion of the DtN symbol and further construct a hierarchical set of ABCs. Let us consider the normalized
operator

L?(x, ∂x, ω) = L(x, ∂x, ω)/(M2
x − 1), (4.6)

such that one can apply Nirenberg’s factorization theorem

L?(x, ∂x, ω) = (∂x + iΛ−)(∂x + iΛ+) mod OPS−∞, (4.7)

= ∂2
x + i

(
Λ+ + Λ−

)
∂x + iOp

{
∂xλ

+
}
− Λ−Λ+ mod OPS−∞. (4.8)
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As in Section 2, the identification of the first and zeroth order derivatives with the normalized convected
wave operator leads to a coupled system{

i (Λ+ + Λ−) = (A1 +A0) /(M2
x − 1)

−Λ−Λ+ + iOp {∂xλ+} =
(
k2

0 + ∂2
y − iB1

)
/(1−M2

x)
, (4.9)

where the terms

A1 = 2ik0Mx, A0 = vx∂x(vxc
−2
0 )− ρ−1

0 ∂x(ρ0), B1 = ωvx∂x(c−2
0 ), (4.10)

have been written relatively to their homogeneity degree in ω. Eliminating Λ− from (4.9) gives an operator
equation for the outgoing characteristic(

1−M2
x

)
(Λ+)2 − i (A1 +A0) Λ+ + i(1−M2

x)Op
{
∂xλ

+
}

= ω2 + ∂2
y − iB1 mod OPS−∞. (4.11)

Expanding the symbol of the DtN operator as classical symbols of decreasing orders, we can identify the
second-order terms in (4.11) to find the principal symbol

λ±1 =
−Mxk0 ±

√
k2

0 − (1−M2
x)ξ2

1−M2
x

, (4.12)

which has been chosen to match the DtN symbol in the uniform flow situation. We recall that the analysis is
valid microlocally and does not hold a priori in the grazing region, that is when the term under the square-
root cancels. The next symbol is computed thanks to the composition rule (2.17). The identification of the
first-order terms in (4.11) gives

2λ+
0

(
(1−M2

x)λ+
1 +Mxk0

)
= −iB1 + iA0λ

+
1 − i(1−M2

x)∂xλ
+
1 , (4.13)

or alternatively, by substitution of the principal symbol in the left-hand side

λ+
0 = i

(M2
x − 1)∂xλ

+
1 +A0λ

+
1 − B1

2
√
k2

0 − (1−M2
x)ξ2

. (4.14)

After the formal computation of the principal symbol derivative, we use the mass conservation relation (4.5)
and obtain the simplified expression

λ+
0 = −i∂x(ρ0)

2ρ0

k2
0 − ξ2

k2
0 − (1−M2

x)ξ2
+ i

∂x(c0)

2c0

k2
0 +M2

xξ
2

k2
0 − (1−M2

x)ξ2
, (4.15)

which is of order zero with respect to (ω, ξ). Intuitively, these terms correspond to an amplitude correction
factor of the wave. For Mx = 0, we retrieve the zeroth order symbol from the heterogeneous Helmholtz
situation (2.23).

4.2. Construction of the ABCs

To build ABCs, the next step is to associate appropriate operators to the symbols, and give them a local
representation. Based on the principal symbol, we consider

Λ1 =
−Mxk0 +

√
k2

0 + (1−M2
x)∆Γ

1−M2
x

, (4.16)

where the inverse Fourier representation is exact in the microlocal sense since neither Mx nor the boundary
Γ depend on the transverse direction. It coincides with the exact DtN map in the uniform mean flow case.
For its implementation, we write the operator in the form

Λ1 = k0
−Mx +

√
1 +X

1−M2
x

, X = (1−M2
x)

∆Γ

k2
0

, (4.17)
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such that the complex Padé approximants (3.14)-(3.15) can be used. For the next symbol λ+
0 , we consider

the operator

Op(λ+
0 ) =

i

2

(
∂x(c0)

c0

(
k2

0 −M2
x∆Γ

)
− ∂x(ρ0)

ρ0

(
k2

0 + ∆Γ

)) (
k2

0 + (1−M2
x)∆Γ

)−1
, (4.18)

leading to Λ2 = Λ1 + Op(λ+
0 ). We can finally define the approximate DtN map by keeping the operators

based on the first M symbols, i.e.

∂nu = −iΛMu on Γ, (4.19)

setting

ΛM =

M−2∑
j=−1

Op(λ+
−j).

The resulting ABCs are again denoted by ABCN,αM after using the complex Padé approximants with param-
eters (N,α). For grazing waves, one might introduce a complexified frequency ωε in the inverse operator
arising in the definition of Λ2.

4.3. Numerical study

We consider the 2D duct case from Figure 1 applied to the convected wave operator (4.4). We choose a
sigmoid x-velocity profile that is inspired from axial flow variations in a turbofan engine intake. The mean
flow properties are shown in Figure 5.

Figure 5: Mean flow profile along the x-direction for the convected wave problem.

We choose the velocity profile as

vx(x) = v0 + δv tanh(s(x− xc)), (4.20)

where we fix the mean value to be v0 = −0.4c∞, the slope strength s = {5, 10}, the deviation δv = 0.3c∞
and the center point xc = 1. The value c∞ = 340 serves as a reference for large x. We also set a reference
velocity v∞ = −0.1c∞. The integration of (4.5) with ρ∞ = 1.2 leads to the mean density

ρ0(x) = ρ∞

∣∣∣∣ v∞vx(x)

∣∣∣∣ ,
and Bernoulli’s relation relative to the reference point gives the speed of sound profile

c0(x) = c∞

√
1 +

γ − 1

2

(
v2
∞ − v2

x(x)

c2∞

)
.

We recall that these profiles are used as an example and do not aim to represent any realistic physical
situation. For this case, we expect the exact solution uex to have the modal structure

uex(x, y) = cos (kyy)A(x), ky =
nπ

H
, n ∈ N, (4.21)
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where A is an unknown oscillatory function. The velocity profile has been chosen such that the initial data
g can be based on the uniform flow situation. For example, a single propagative mode is enforced as

ρ0(1−M2
x)g = i

(
−Mxk0 +

√
k2

0 − (1−M2
x)k2

y

)
cos(kyy). (4.22)

The variational formulation associated to the duct problem is built directly from (4.1). After multiplication
by ρ0 > 0, we look for u ∈ H1(Ω) such as:

∀v ∈ H1(Ω),

∫
Ω

ρ0∇u · ∇v −
ρ0

c20
D0uD0vdΩ + i

(∫
Γ3

ρ0k0Mxu vdΓ3 −
∫

Γ1

ρ0k0Mxu vdΓ1

)
(4.23)

−
∫

Γ3

ρ0(1−M2
x)∂nu vdΓ3 =

∫
Γ1

ρ0(1−M2
x)g vdΓ1, (4.24)

where D0 = iω + vx∂x. The practical finite element implementation of the ABCN,α2 is similar to the one
described in Section 3.3, in particular regarding the introduction of auxiliary functions into the variational
formulation following (3.24)-(3.26). In all the simulations, we use linear Q4 elements of size h = 1/40 and
the p-FEM order is fixed to p = 8.

4.3.1. Validation for a uniform mean flow

For a uniform mean flow, we have Λ = Λ1. The exact solution reads

uex(x, y) = cos (kyy) e−ikxx, ky =
nπ

H
, n ∈ N, (4.25)

and the exact DtN map Λ = kx is given by the wavenumberkx = 1
1−M2

x

(
−Mxk0 +

√
k2

0 − (1−M2
x)k2

y

)
, k2

0 > (1−M2
x)k2

y,

kx = 1
1−M2

x

(
−Mxk0 − i

√
(1−M2

x)k2
y − k2

0

)
, k2

0 < (1−M2
x)k2

y.
(4.26)

We measure the L2-error as defined in (3.29) for Mx = −0.8 and look at the performance of ABCN,α in
the hyperbolic and elliptic zones, shown respectively in Figures 6a and 6b. A duct of shorter length is used
to evaluate the error in the elliptic zone since the exact solution is evanescent and decays exponentially in
the duct. Because the mean flow is uniform, the ABC accuracy tends to the one obtained with the exact
DtN operator as the number of auxiliary functions N grows. The angle α corresponds to a trade-off between
the attenuation of evanescent and propagative modes. When k0 → 0, the mode does not propagate and the
square-root approximation is no longer accurate. As expected from microlocal analysis, none of the conditions
are able to tackle grazing waves. They are located respectively at k0 ≈ 23 and k0 ≈ 15 in Figures 6a and 6b.
Similar results are obtained when Mx > 0.

4.3.2. Validation for a non uniform mean flow

For a non-uniform flow, there is unfortunately no analytical solution for our problem, and we must resort
to a numerical alternative. Perfectly matched layers seem a reliable option, although their efficiency for
heterogeneous problems remains unclear. To bypass the effect of the medium heterogeneity in the PML, we
follow an approach similar to the one proposed in [62]. The idea is to extend the computational domain and
further apply a PML in the region where the mean flow is uniform. The PML is terminated by a homogeneous
Neumann boundary condition. A second issue for convected problems is the presence of inverse modes that
makes the PML unstable and ineffective in practice. Fortunately stabilization techniques are available and we
will use the stabilized version of the PML described in [63]. The strategy to compute the reference solution
is illustrated in Figure 7. Three closed domains are defined: the physical domain Ω = [0, L] × [0, H], the
extended domain Ωext = [L,Lref] × [0, H] and the PML domain Ωpml = [Lref, Lpml] × [0, H]. The relative
L2-error (in %) is then measured in the truncated domain Ω as

EL2 = 100

∥∥upml|Ω − uh∥∥L2(Ω)∥∥upml|Ω∥∥L2(Ω)

, (4.27)
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Figure 6: Relative L2-error for the condition ABCN,α. Left: propagative regime for different number of auxiliary fields N and
α = 0. Right: evanescent regime for different rotation angles α and N = 4. Reference solution ( ).
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Figure 7: Illustration of the strategy to compute the reference solution. The mean flow derivative is assumed to be zero at
x = Lref. The ABC boundary is at x = L.

where upml is computed in {Ω∪Ωext∪Ωpml} = [0, Lpml]×[0, H] and further restricted in Ω. For our simulations
we choose a PML of width |Lpml − Lref| = 10h.

In order to evaluate the efficiency of the ABCs we consider a set of frequencies and ABC positions L for
a given mode n. The selected frequencies span the elliptic, grazing and hyperbolic regimes. Figure 8 shows
the real part of some reference solutions in Ω for Lref = 4 and L = 2. According to the mean flow profile in
Figure 5 we set k∞ = ω/c∞ to be the reference wavenumber. The modal behaviour has interesting features
in the grazing regime: at k∞ = 20 and k∞ = 25, the mode is cut-on at the input and cut-off when it reaches
x = 2. When this behaviour occurs within the computational domain, there is an interference pattern that
does not appear in the uniform flow case. The mode has to reflect at a turning point (see e.g. [51] section 8.5),
where the square-root term of the principal symbol (4.12) vanishes. The transition range is approximately
k∞ ∈ [17, 25] and we do not expect any ABCs to perform well in this regime. In the propagative regime
(such as k∞ = 40 and k∞ = 60), the wavelength increases in the duct due to the mean flow variation.

For a general velocity profile, we have no a priori information on the location of the turning point.
However thanks to the separable structure of the solution one may infer that it is reduced to a fixed value
xt. Since the mean flow is analytically prescribed, we can find the turning point xt whenever the equality

ω2 =
(
c20(xt)− v2

x(xt)
) (nπ

H

)2

(4.28)

holds. If xt lies in the duct, its value is reported in Figure 8.
We present in Figures 9 and 10 the relative L2-error as a function of the ABC position L and input

wavenumber k∞ for two velocity profiles of respective slopes s = 5 and s = 10. When the propagative regime
is well developed (k∞ > 25), the condition ABCN,α2 shows in general a gain in accuracy of more than one

order of magnitude compared to ABCN,α1 , especially for the cases where the mean flow derivative is non-zero.
In this model, even a small value of the velocity derivative has an impact on the ABC accuracy. It partially
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(a) k∞ = 20, n = 4, xt ≈ 0.89 (b) k∞ = 25, n = 4, xt ≈ 1.56

(c) k∞ = 40, n = 4 (d) k∞ = 60, n = 4

Figure 8: Real part of the reference solution for fixed frequencies

comes from relation (4.5) which imposes large density variations to the mean flow. The velocity profile of
slope s = 10 has a stronger variation compared to the case s = 5 near the middle of the duct, but its variation
is weaker near its ends x = 0 and x = L. It is therefore more challenging and the gain in accuracy between
ABCN,α2 and ABCN,α1 is less pronounced for s = 10 than for s = 5.

Note that the contribution due to the density variations on the L2-error is more important than the one
due to the variation of the speed of sound. This is directly linked to the value of the factors ∂x(ρ0)/ρ0 and
∂x(c0)/c0 in equation (4.18).

As expected, we observe challenging situations for the ABCs in the regime k∞ ∈ [17, 25], where the wave
is grazing and close to the critical situation from (4.28). More precisely when the ABC is located before
the turning point L < xt it has to capture a wave that propagates along both the positive and negative x-
direction, and such a behaviour is not tackled by our method. Although improvements can be found locally
by tuning a dissipation parameter ε for the inverse operator of the zeroth order symbol (as it was done in
Section 3.3), the results are not general enough to be included. Finally for low frequencies where the mode
is evanescent, the error can be reduced with a higher value of α.

To sum up, the most efficient condition is ABCN,α2 and the rules for tuning (N,α) are the same as
in Section 3.3. It confirms the effectiveness of the operators obtained from microlocal analysis. As said
before, we recommend to always rotate the branch-cut of the principal symbol, since in practice we want
the attenuation of all modes and do not know the turning point location, in particular where there is a
superposition of modes. We claim that the presented results stay valid in a multi-modal situation.

5. Transverse variation

This section describes a third situation which is more complex and highlights some limitations of the
method. We consider the heterogeneous Helmholtz equation subject to a transverse variation of the speed of
sound c0(x, y) = c0(y) and density ρ0(x, y) = ρ0(y)

∂2
xu+ ρ−1

0 ∂y(ρ0∂y)u+ k2
0u = 0, k0 = ω/c0. (5.1)
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Velocity profile with slope s = 5.
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Velocity profile with slope s = 10.

For the two-dimensional straight duct problem, we can still use the separation of variables and write the
exact solution as a linear combination of modes

uex(x, y) =
∑
n≥0

Un(y)e−ik
n
xx, (5.2)

and the exact DtN operator can be explicitly written for a single mode as

Λ̃± = ±knx on Γ3, (5.3)

where the knx are the propagation constants given by the Sturm-Liouville eigenvalue problem{
U ′′(y) + ρ−1

0 ∂y(ρ0)U ′(y) + k2
0(y)U(y) = (kx)2U(y),

U ′(0) = 0, U ′(H) = 0,
(5.4)

where we consider homogeneous Neumann boundary conditions on the duct upper and lower walls. In the
constant coefficient case, the eigenmodes and eigenvalues are respectively given by

Un(y) = cos (kyy) , (knx )2 = k2
0 − k2

y, ky =
nπ

H
, n ∈ N. (5.5)

Compared to the previous sections, the main difficulty is that all the information is contained in the eigenval-
ues, which moreover depend on the boundary conditions on the walls. Such problems are common in various
fields of physics such as but not limited to acoustics [51], optics [64] or geophysics [65].
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5.1. Computation of the dispersion relation

For some specific profiles, one may derive the general solution of the boundary value problem (5.4) and
find the associated eigenvalues by looking for the zeros of a transcendental equation. We solve the problem
semi-analytically thanks to a one-dimensional spectral method, which leads to highly accurate results for
an arbitrary profile [66]. The approach allows to quickly compute the dispersion relation, which relates the
propagation constants knx to the input frequency ω. For the speed of sound profile we choose the Gaussian
profile given in [40]

c0(y) = 1.25
(

1− 0.4e−32(y−H/2)2
)
, H = 1, (5.6)

and select the density such as ρ0(y) = c20(y). Hence, one may identify these quantities as a refractive index
for transverse electric and magnetic modes in optical waveguides [64]. Figure 11 compares the dispersion
relations associated to propagative modes for the homogeneous case and for the Gaussian profile. A qualitative
observation indicates that the speed of sound variations have the most significant impact on the modal
structure. The eigenvalues associated to the Gaussian profile seem to be driven by one of the two lines of
equation `1 = ω/max(c0) and `2 = ω/min(c0). The limit case would be a constant piecewise profile, for
which the eigenvalues accumulate along the lines `1 and `2 in the high frequency limit [64].

c0(y) = 1.25

(a) Homogeneous

c0(y) = 1.25(1− 0.4e−32(y−H/2)2)

(b) Gaussian

Figure 11: Dispersion relation associated to propagative modes for a homogeneous and Gaussian profile.

Figure 12 presents the propagative eigenmodes at the fixed frequency ω = 37, where two types of modes
can be identified:

1. the guided modes, which are decaying close to the duct walls;
2. the radiating modes, which are fully oscillating.

Although not shown, evanescent modes are also present and have a purely imaginary propagation constant.
They are highly oscillatory and decay exponentially along the x-direction.

5.2. Transverse variation of the density

5.2.1. Strategies for the choice of the principal symbol

We first consider the case of a variable density and constant speed of sound c0 = 1 and present two
strategies for selecting the principal symbol. The first one consists in choosing the classical symbol

λ+
1 =

√
ω2 − ξ2,

together with the zeroth order symbol given in (2.23)

λ+
0 =

−iξ∂y(ρ0)

2ρ0

√
ω2 − ξ2

.

21



(a) Homogeneous (b) Gaussian

Figure 12: Normalized propagative eigenmodes for the homogeneous and Gaussian profiles along the duct height y ∈ [0, H] at
ω = 37 using color convention from Figure 11.

By contrast to the case of longitudinal heterogeneity, the zeroth order symbol depends on the transverse
variable and the choice of an appropriate operator is less natural. Nevertheless, we can choose here the
operators such that the following correspondence holds

Op(λ+
1 ) =

√
ω2 + ∆Γ mod OPS−∞, Op(λ+

0 ) =
∂y(ρ0)

2ρ0
∇Γ(ω2 + ∆Γ)−1/2 mod OPS−∞. (5.7)

Note that the choice for Op(λ+
0 ) is not unique and that a different choice might be more relevant to the

situation. The computation of the operator asymptotic expansion at the symbol level allows to compare it
with λ+

0 and next obtain the operator regularity estimate. We build the approximate DtN maps ΛM based
on the first M symbols in the high frequency limit ω →∞ as

Λ1 = ω
√

1 +X2, Λ2 = Λ1 +
∂y(ρ0)

2ρ0
X
(
1 +X2

)−1/2
, X =

∇Γ

ω
, (5.8)

and use a rotated branch-cut Padé approximation for the inverse square-root [67]

(1 + z)−1/2 ≈
N∑
`=1

R`
S` + z

, R` = eiα/2c`/N, S` = 1 + eiα(−1 + c`), c` = 1 + tan2

(
π

2N

(
`− 1

2

))
. (5.9)

The resulting ABCs are again denoted ABCN,αM .
The second strategy is a semi-classical approach, which enriches the information contained in the principal

symbol. It consists in keeping all the terms in the right-hand side of (2.16). The modified principal symbol
is

λ+
S,1 =

√
ω2 − ξ2 − iξρ−1

0 ∂y(ρ0). (5.10)

A natural choice for its operator representation would be to choose the modified square-root

ΛS =

√
ω2 + ρ−1

0 ∇Γ (ρ0∇Γ). (5.11)

One observes that the principal symbol of ΛS is σ (ΛS) =
√
ω2 − ξ2, and that the next symbols coincide with

the sequence {λ+
−j , j ≥ −1} from the first strategy. Hence we have

Op(λ+) = ΛS mod OPS−∞. (5.12)
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As a consequence, the use of ΛS as an ABC should accurately represent the DtN operator. The modified
square-root operator is then written as

ΛS = ω
√

1 + Z, Z =
∆Γ + ρ−1

0 ∇Γ∂y(ρ0)∇Γ

ω2
, (5.13)

and localized using the complex Padé approximants (3.15). The semi-classical ABC is denoted ABCN,αS .

5.2.2. Weak formulation and numerical tests

We follow the methodology from the previous sections and consider the duct case problem boundary
value problem depicted in Figure 1. The variational form associated to the domain equation (5.1) reads: find
u ∈ H1(Ω) such that

∀v ∈ H1(Ω),

∫
Ω

{∇u · ∇v − ρ−1
0 ∂y(ρ0)∂yu v − k2

0u v} dΩ + i

∫
Γ3

Λu v dΓ3 =

∫
Γ1

g v dΓ1. (5.14)

As input boundary condition we enforce a given mode n from the homogeneous case and set its amplitude
to unity

g = cos
(nπ
H
y
)
, n ∈ N. (5.15)

Since g is not an eigenfunction of the Sturm-Liouville problem (5.4), the solution exhibits the propagation
of multiple-modes. Moreover, the transverse oscillations present a more complex pattern compared to the
homogeneous situation, as shown in Figure 13a. As a reference we consider a numerical solution using a large
PML. The physical domain Ω is extended by Ωpml = [L,Lpml] × [0, H] and the relative L2-error (in %) is
measured as

EL2 = 100

∥∥upml|Ω − uh∥∥L2(Ω)∥∥upml|Ω∥∥L2(Ω)

. (5.16)

In order to validate the PML in the transverse heterogeneous case we have performed a mode-by-mode
analysis where the semi-analytical solution for a fixed mode uex(x, y) = U(y)e−ikxx is generated thanks to
the one-dimensional spectral method used for the problem (5.4). Each eigenfunction U(y) is used as input
boundary condition and the DtN map is given by the corresponding eigenvalue kx. The variational form
with the PML follows from the substitution ∂x̃ = ∂x − iσ(x)/ω in (5.14), where σ is zero in Ω and given by
the hyperbolic function σ(x) = σ0/(Lpml − x), σ0 ∈ C in Ωpml. Since we later assess the ABCs accuracy in
a multi-modal situation special attention must be paid to grazing modes which are characterized by a high
phase velocity. After numerical experiments we conclude that the value σ0 = 40 together with a large PML
|Lpml − L| = 40h yields an optimal accuracy for all modes. As a result we obtain a reference solution that
has the precision of the DtN map, and by linearity we suppose it holds in the multi-modal case. Additional
considerations can be found in the appendix of [63]. For the simulations we use again Q4 elements of size
h = 1/40 and set the p-FEM order to p = 6.

For the practical implementation of the ABCN,αS and ABCN,α2 with finite elements, we use an augmented

system with auxiliary functions on the boundary as explained in Section 3. For ABCN,αS , the boundary
integral on Γ3 with Padé approximants gives, ∀v ∈ H1(Ω),

i

∫
Γ3

ABCN,αS u v dΓ3 = i

∫
Γ3

ωC0u v dΓ3 − i
∫

Γ3

A`
ω
∇Γ3

ϕ` · ∇Γ3
v dΓ3 + i

∫
Γ3

A`∂y(ρ0)

ωρ0
∇Γ3

ϕ` · v dΓ3, (5.17)

where ϕ` are given through the N auxiliary equations

∀v` ∈ H1(Γ3),

∫
Γ3

ω2ϕ` v` dΓ3 −
∫

Γ3

B`∇Γ3
ϕ` · ∇Γ3

v` dΓ3 +

∫
Γ3

B`∂y(ρ0)

ρ0
∇Γ3

ϕ` · v` dΓ3 =

∫
Γ3

ω2u v` dΓ3.

(5.18)

For the implementation of ABCN,α2 , we need to introduce a total of 2N supplementary auxiliary equations.

For simplicity, the same tuning parameters (N,α) are used as done in the implementation of ABCN,α1 for the
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localization of the inverse square root operator. The second set of auxiliary functions is denoted (ψ1, · · · , ψN ).
The variational formulation reads, ∀v ∈ H1(Ω),

i

∫
Γ3

ABCN,α2 u v dΓ3 = i

∫
Γ3

ωC0u v dΓ3 − i
∫

Γ3

A`
ω
∇Γ3ϕ` · ∇Γ3v dΓ3 + i

∫
Γ3

∂y(ρ0)

2ωρ0
∇Γ3ψ` · v dΓ3, (5.19)

where ϕ` and ψ` are given through the 2N auxiliary equations

∀v` ∈ H1(Γ3),

∫
Γ3

ω2ϕ` v` dΓ3 −
∫

Γ3

B`∇Γ3ϕ` · ∇Γ3v` dΓ3 =

∫
Γ3

ω2u v` dΓ3, (5.20)

∀µ` ∈ H1(Γ3),

∫
Γ3

S`ω
2 ψ` µ` dΓ3 −

∫
Γ3

∇Γ3ψ` · ∇Γ3µ` dΓ3 =

∫
Γ3

R`ω
2uµ` dΓ3. (5.21)

The results are first analyzed when for the fixed ABC position L = 2, where we expect propagative modes
(corresponding to the hyperbolic zone) to have the largest impact on the ABC quality. The rotation angle is
set to α = −π/4.

(a) Reference solution at ω = 30.
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(c) Influence of the ABC location at ω = 30.

Figure 13: Real part of the reference solution for the mode n = 4 and relative L2-errors when varying the frequency and ABC
location.

We report in Figure 13b the relative L2-error as a function of the input frequency ω for ABCN,α1 , ABCN,α2

and ABCN,αS . The condition ABCN,α2 performs better than ABCN,α1 especially in the high-frequency regime,

and ABCN,αS outperforms the two other conditions. The microlocal theory gives a consistent interpretation

to the results. While ABCN,α2 only incorporates the contribution of the zeroth order symbol, the condition

ABCN,αS encodes the full asymptotic symbolic expansion of the DtN operator thus leading to an excellent

ABC. Besides, the performance of ABCN,αS can be improved by increasing the number of auxiliary functions
N . It means that Padé approximants are able to accurately represent the information contained in the DtN
symbols. This is not the case for ABCN,α1 neither ABCN,α2 , where the error reaches a plateau when N grows.
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It confirms the approximate representation of the DtN map. Although not reported, one may use a second
order Taylor approximation for high frequencies. In that case, the operators Λ2 and ΛS with the two first
symbols reduce to the same expression

Λ2
2 = ω +

∂y(ρ0)

2ωρ0
∇Γ +

∆Γ

2ω
. (5.22)

Further numerical tests show that its performance is close to the one of ABCN,α2 .
In Figure 13c the length of the duct is varied at a fixed frequency ω = 30 to examine the effect of the

rotation branch-cut in the elliptic regime. By contrast to the case of a longitudinal heterogeneity, evanescent
modes are only present when the ABC is close enough to the input boundary. We observe as expected
that the reflection of evanescent modes becomes negligible beyond a certain value of L. For the condition
ABCN,αS , the rotation angle has a similar effect as in the homogeneous case. Evanescent modes are better
damped when α increases but to the detriment of propagative modes. Therefore, we recommend to increase
the number of auxiliary fields together with α as proposed in the previous sections.

Grazing waves deteriorate the overall ABC quality in such a multi-modal situation, especially in the
low frequency regime. All the ABCs show error peaks for a discrete set of frequencies. They correspond
to evanescent modes becoming cut-on and can be accurately predicted by the dispersion relation. As a
workaround we may add a small dissipation parameter to the frequency within the square-root operator [43].
It has the effect to remove the singular behaviour of the operator but deteriorates the attenuation of all other
modes. However this strategy did not significantly improve the ABCs.

5.3. Transverse variation of the speed of sound

The effect of the heterogeneity is now examined with a transverse variation of the speed of sound and a
density set to unity. Following the analysis from Section 2 we choose the following operator to represent the
principal symbol

Op(λ+
1 ) =

√
ω2c−2

0 + ∆Γ mod OPS−2, λ+
1 =

√
ω2c−2

0 − ξ2. (5.23)

We remark that the next symbols of Op(λ+
1 ) are exactly the DtN symbolic expansion such that we have

Op(λ+) =

√
ω2c−2

0 + ∆Γ mod OPS−∞, (5.24)

which means that the square-root operator is an accurate representation of the DtN map from a microlocal
point of view. This result can be obtained more directly from Nirenberg’s factorization procedure (2.8)
since the speed of sound does not depend on the direction of propagation. The situation is similar as for
the operator ΛS (5.11) in the case of a variable density. However it is here more involved to find a local
representation of the square-root operator, because the speed of sound variations affect the real part of λ+

1

for which the sign may change along the non-reflecting boundary.
We examine two different ways to approximate the square-root operator, denoted Λω and Λk0 to allude

to the factor in front of the square root

Λk0 = k0

√
1 +

∆Γ

k2
0

, Λω = ω

√
1 +

[
(c−2

0 − 1) +
∆Γ

ω2

]
, (5.25)

where we recall that k0 = ω/c0. The second approximation is often used in one-way modeling for beam
propagation in optical waveguides [68]. Once again, complex Padé approximants are used for the localization

procedure. The obtained ABCs are denoted ABCN,αk0
and ABCN,αω . In order to analyze their potential

accuracy, we compute the function of two variables at a fixed frequency ω

fk0(ξ, y) =
∣∣∣λ+

1 − σ
(

ABCN,αk0

)∣∣∣ , fω(ξ, y) =
∣∣λ+

1 − σ
(
ABCN,αω

)∣∣ , (5.26)

which is nothing but the difference between the DtN and ABC principal symbols.
We plot both functions in a logarithmic scale in Figure 14 for the parameters N = 8 and α = −π/2. The

condition ABCN,αω seems to be a better candidate than ABCN,αk to approximate the DtN principal symbol.
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Both functions show a singularity along the characteristic line of equation ξ = ±ωc−1
0 (y) where the square

root vanishes. On the contrary to the homogeneous or x-profile case, the turning region is not reduced to
a single point and both oscillatory and evanescent behaviour may be present for a fixed value of ξ (a given
mode). This behaviour is intimately linked to the spectral properties of the Sturm-Liouville problem.

log10 fk0(ξ, y) log10 fω(ξ, y)

Figure 14: Difference in logarithmic scale between the DtN principal symbol and its approximation by Padé approximants
(N = 8, α = −π/2) for the Gaussian speed of sound profile at ω = 30.

We plot in Figure 15 an example of numerical solution and report the relative L2-error defined in (5.16) for
different conditions. As for the case of transverse variable density, we use a large PML of width |Lpml−L| =
100h as a reference solution.

The condition ABCN,αω is more accurate than ABCN,αk0
, which can be understood from Figure 14 by

a better approximation of the DtN principal symbol. The parameters (N,α) have a marginal impact on

ABCN,αk0
, while we observe an improvement with N for ABCN,αω . This suggests that the condition ABCN,αω

is a good approximation of the DtN map, although a more efficient localization of the square-root operator
may be sought. As expected, grazing waves are not well tackled by the proposed ABCs. A more advanced
analysis is required and is out of scope of this work. For example, a microlocal cut-off function might be used
to handle the singularity [65, 69].
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Figure 15: Real part of the reference solution at ω = 55 for the mode n = 4 and relative L2-error for L = 2 when varying the
frequency for the Gaussian speed of sound profile.

To conclude, Padé approximants provide a comprehensive way to design non-reflecting boundaries in the
transverse heterogeneous case, but requires a careful implementation. It reaches its limitations for complex
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heterogeneous media, for example in the presence of corners and/or non-smooth heterogeneities. For such
situations, algebraic or numerical techniques to find sparse representations of the DtN map could be more
appropriate [31, 32, 70].

6. Conclusion

In this paper, we built and numerically analyzed two families of ABCs for the heterogeneous Helmholtz
equation, based on a general strategy which i) needs the computation of the first symbols of the DtN map by
microlocal analysis techniques, and ii) next approximates the symbols by a Taylor or complex Padé expansion,
resulting in local ABCs. These ABCs can be easily implemented in a high-order finite element solver. We
analyzed in details three configurations

• a longitudinal heterogeneous duct problem with linear x-dependent speed of sound c0(x, y) = c0(x);

• a convected wave duct problem with non-uniform mean flow parameters along the x-direction;

• and finally a duct problem with a transverse density ρ0(x, y) = ρ0(y) and speed of sound c0(x, y) = c0(y).

For the two first cases, our strategy led to the construction of relatively accurate local ABCs, called ABCN,α2 ,
based on the two first symbols of the DtN map and Padé approximants with tuning parameters (N,α).
The last situation depends on an appropriate choice for the square-root operator, which has been guided by
microlocal analysis and studies on optical waveguides. It led to fairly efficient ABCs, called ABCN,αS and
ABCN,αω . Aside from specific cases, grazing waves are not correctly handled and require alternative strategies
that will be studied in further works. Additional simulations, most particularly in 3D, would give more
information about the capacity of the ABCs to simulate industrial situations.

A promising application of the proposed ABCs is to use them as transmitting boundary conditions in
Schwarz domain decomposition methods for solving the heterogeneous Helmholtz equation. Indeed, the
choice of well-designed transmitting boundary conditions provides fast converging iterative solvers for the
simulation of large scale physical situations [39]. This constitutes a natural next step of our developments,

where we will consider ABCN,α2 , ABCN,αS and ABCN,αω as transmitting boundary conditions in optimized
Schwarz DDMs.

Data Reproducibility

The source code to reproduce the simulation data is available online at https://gitlab.onelab.info/

gmsh/fem in the folder examples/helmholtz2d/waveguide2 for Sections 3 and 5 and in the folder
examples/helmholtzFlow/waveguide3 for Section 4. Installation instructions are given in the corresponding
README.md file.
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Appendix A. Optimized reflection coefficient for the linear profile

For a fixed transverse mode, the Airy differential equation

∂2
xu+

(
ω2(ax+ b)− k2

y

)
u = 0, (a, b, ω, ky) > 0, (A.1)

admits the outgoing and associated ingoing linearly independent solutions [50]

u1 = Ai(e−2iπ/3z), u2 = Bi(e−2iπ/3z), z = −(aω2)1/3x+
k2
y − ω2b

(aω2)2/3
. (A.2)

We set the outgoing wave amplitude to unity, and express the total field as the sum of the forward and
reflected fields

u = u1 +Ru2, (A.3)

where R is the reflection coefficient. Since the DtN operator links the solution with its normal derivative on
the boundary, we obtain for the total field

∂x(u1 +Ru2) = −iΛ(u1 +Ru2), at x = L. (A.4)

An analytic expression for the reflection coefficient can be derived by replacing the expression of Λ in (3.20)

R =

∣∣∣∣ (aω2)1/3e−2iπ/3Ai’(e−2iπ/3z)− iΛAi(e−2iπ/3z)

−(aω2)1/3e−2iπ/3Bi’(e−2iπ/3z) + iΛBi(e−2iπ/3z)

∣∣∣∣ =

∣∣∣∣a(x, ω)

b(x, ω)

∣∣∣∣ . (A.5)
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|Λ− ΛM |

Figure A.16: Difference between the exact and approximate DtN operators as a function of the frequency ω. a = 5, b = 0.1, n =
5, H = 0.5, L = 0.5.

The next step is to analyze the accuracy of the different DtN approximations obtained by microlocal analysis.
This could be done with respect to the transverse mode, the frequency or the position of the ABC. It is
illustrated in Figure A.16 as a function of the frequency. As predicted theoretically, the precision of the ABC
increases with its approximation order but deteriorates at the turning point.

The inverse operators arising from the asymptotic analysis introduce a singularity at the turning point
xt. We propose to focus on the second order condition and add a dissipation parameter ε such that

Λ2 =
√
ω2c−2

0 − k2
y −

iω2∂x(c−2
0 )

4(ω2
εc
−2
0 − k2

y)
, ωε = ω − iε. (A.6)

We next look for the minimum of the reflection coefficient at the turning point, yielding a simple minimization
problem

min
ε>0
|aε(xt, ωt)|, (A.7)

where aε(xt, ωt) simplifies to

aε(xt, ωt) = (aωt)
1/3e−2iπ/3Ai′(0) +

aω2
tAi(0)

4ε(axt + b)(2iωt − ε)
, ωt =

ky√
axt + b

. (A.8)

The problem can be solved explicitly:

εopt = 2ωt sin(2π/3)

1−

√
1 +

Ai(0)

8 sin2(2π/3)Ai’(0)

(
a

ky(axt + b)

)2/3
 . (A.9)

The present analysis is however only valid when an analytic solution is available. We use the value εopt for
our computations, and leave alternative strategies (e.g. purely numerical) to optimize the reflection coefficient
for a future work. We plot in Figure A.17 the reflection coefficient before and after the approximation of the
square-root term by Padé approximants. The condition R < 1 seems to hold if N is taken large enough. The
choice of α is important to ensure R < 1 in the whole frequency range. For example, the choice α = −π/3
needs at least N = 5 to ensure R < 1 in the entire elliptic zone.
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Figure A.17: Reflection coefficient for different approximations with α = −π/2 for Padé-based conditions.

Appendix B. Formal computation of the DtN approximation for the linear profile

1 from sympy import diff , series , Function , symbols , poly

2 from sympy import I, discriminant , simplify , sqrt , collect

3 from sympy import init_printing

4 init_printing ()

5

6 # Physical variables

7 x, xi = symbols(’x xi’, positive=True , real=True)

8 w = symbols(’omega’, positive=True , real=True)

9 n = Function("n", real=True , positive=True); # refractive index n(x)=c_0^{-2}(x)

10

11 # -------------- lambda1 --------------

12 X = symbols(’X’) # polynomial variable

13 Charac_eq = poly( X**2 + xi**2 - w**2*n(x), X)

14 D = discriminant(Charac_eq)

15 lambda1 = simplify(sqrt(D)/2)

16 lambda1_Taylor = series(lambda1 , xi, 0, 3)

17

18 # -------------- lambda0 --------------

19 dlambda1_x = diff(lambda1 ,x) # partial_x1(lambda_1 ^+)

20 lambda0 = simplify(-I*dlambda1_x /(2* lambda1)) # composition rule for symbols

21 lambda0_Taylor = series(lambda0 , xi, 0, 3)

22

23 # -------------- lambda -1 --------------

24 dlambda0_x = diff(lambda0 ,x)

25 lambdaM1 = simplify( (-lambda0 **2 - I*dlambda0_x)/(2* lambda1) ) # composition rule for

symbols

26 lambdaM1_Taylor = series(lambdaM1 , xi, 0, 3)

27

28 # -------------- lambda -2 --------------

29 dlambdaM1_x = simplify(diff(lambdaM1 ,x))

30 lambdaM2 = simplify( (-2* lambda0*lambdaM1 - I*dlambdaM1_x)/(2* lambda1) ) # composition rule

for symbols

31 lambdaM2_Taylor = series(lambdaM2 , xi, 0, 3)

32

33 # sum the contribution of the four symbols to obtain the DtN approximation

34 DtN_app = series(lambda1_Taylor+lambda0_Taylor+lambdaM1_Taylor+lambdaM2_Taylor ,xi ,0,3)

35

36 # finally cancel the high order speed of sound derivatives for the linear case

37 DtN_app_quadratic = simplify(DtN_app.subs(diff(diff(diff(n(x),x),x),x) ,0))

38 DtN_app_linear = simplify(DtN_app_quadratic.subs(diff(diff(n(x),x),x) ,0))

39 # rearrange the terms and print

40 print(collect(DtN_app_linear ,xi))

Listing 1: Sympy code for the computation of Λ2
4.

33


	Introduction
	DtN operator for the heterogeneous Helmholtz problem
	Preliminary definitions
	Symbols computation
	Microlocal regimes
	Summary

	Longitudinal heterogeneous problem
	Symbols and associated operators
	Construction of the ABCs
	Description of the test case
	Numerical results

	The convected wave operator
	Symbols computation
	Construction of the ABCs
	Numerical study
	Validation for a uniform mean flow
	Validation for a non uniform mean flow


	Transverse variation
	Computation of the dispersion relation
	Transverse variation of the density
	Strategies for the choice of the principal symbol
	Weak formulation and numerical tests

	Transverse variation of the speed of sound

	Conclusion
	Optimized reflection coefficient for the linear profile
	Formal computation of the DtN approximation for the linear profile

