[en] We present a method for computing robust shape quality measures defined for finite elements of any order and any type, including curved pyramids. The measures are heuristically defined as the minimum of the pointwise quality of curved elements. Three pointwise qualities are considered: the ICN that is related to the conditioning of the stiffness matrix for straight-sided simplicial elements, the scaled Jacobian that is defined for quadrangles and hexahedra, and a new shape quality that is defined for triangles and tetrahedra. Based on previous work presented by Johnen et al. (Journal of Computational Physics 233:359–372, 2013, [1]); Johnen and Geuzaine (Journal of Computational Physics 299:124–129, 2015, [2]), the computation of the minimum of the pointwise qualities is efficient. The key feature is to expand polynomial quantities into Bézier bases which allows to compute sharp bounds on the minimum of the pointwise quality measures.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Johnen, A.; Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, Louvain-la-Neuve, Belgium
Geuzaine, Christophe ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Toulorge, T.; Cenaero, Gosselies, Belgium
Remacle, J.-F.; Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, Louvain-la-Neuve, Belgium
Language :
English
Title :
Quality Measures for Curvilinear Finite Elements
Publication date :
2021
Main work title :
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
Publisher :
Springer Science and Business Media Deutschland GmbH
A. Johnen is mandated by the Belgian Fund for Scientific Research (F.R.S.-FNRS). This research project was funded in part by the Walloon Region under WIST 3 grant 1017074 (DOMHEX) and by TILDA project.
A. Johnen, J.-F. Remacle, C. Geuzaine, Geometrical validity of curvilinear finite elements. J. Comput. Phys. 233, 359–372 (2013)
A. Johnen, C. Geuzaine, Geometrical validity of curvilinear pyramidal finite elements. J. Comput. Phys. 299, 124–129 (2015)
Z.J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K. Hillewaert, H.T. Huynh, N. Kroll, G. May, P.-O. Persson, B. van Leer, V. Miguel, High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)
R.M. Kirby, S.J. Sherwin, B. Cockburn, To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2012)
P.E.J. Vos, S.J. Sherwin, R.M. Kirby, From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low-and high-order discretisations. J. Comput. Phys. 229(13), 5161–5181 (2010)
G. Karniadakis, S. Sherwin, Spectral/hp element methods for computational fluid dynamics (Oxford University Press, 2013)
I. Babuška, B.A. Szabo, I.N. Katz, The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)
I. Babuška, B.Q. Guo, The h-p version of the finite element method for domains with curved boundaries. SIAM J. Numer. Anal. 25(4), 837–861 (1988)
R.H. MacNeal, Finite Elements (CRC Press, 1993)
T. Toulorge, C. Geuzaine, J.-F. Remacle, J. Lambrechts, Robust untangling of curvilinear meshes. J. Comput. Phys. 254, 8–26 (2013)
P.M. Knupp, On the invertibility of the isoparametric map. Comput. Methods Appl. Mech. Eng. 78(3), 313–329 (1990)
P. Knupp, Label-invariant mesh quality metrics. in Proceedings of the 18th International Meshing Roundtable (Springer, 2009), pp. 139–155
P.L. George, H. Borouchaki, Construction of tetrahedral meshes of degree two. Int. J. Numer. Methods Eng. 90(9), 1156–1182 (2012)
D.A. Field, Qualitative measures for initial meshes. Int. J. Numer. Methods Eng. 47(4), 887–906 (2000)
J. R. Shewchuk, What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures (preprint), preprint (2002)
S.J. Sherwin, J. Peiró, Mesh generation in curvilinear domains using high-order elements. Int. J. Numer. Methods Eng. 53(1), 207–223 (2002)
X. Luo, M.S. Shephard, R.M. O’bara, R. Nastasia, M.W. Beall, Automatic p-version mesh generation for curved domains. Eng. Comput. 20(3), 273–285 (2004)
P.-O. Persson, J. Peraire, Curved mesh generation and mesh refinement using Lagrangian solid mechanics. in 47th AIAA Aerospace Sciences Meeting (2009)
Z.Q. Xie, R. Sevilla, O. Hassan, K. Morgan, The generation of arbitrary order curved meshes for 3D finite element analysis. Comput. Mech. 51(3), 361–374 (2013)
R. Abgrall, C. Dobrzynski, A. Froehly, A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems. Int. J. Numer. Methods Fluids 76(4), 246–266 (2014)
D. Moxey, M. Green, S. Sherwin, J. Peiró, An isoparametric approach to high-order curvilinear boundary-layer meshing. Comput. Methods Appl. Mech. Eng. 283, 636–650 (2015)
M. Fortunato, P.-O. Persson, High-order unstructured curved mesh generation using the winslow equations. J. Comput. Phys. 307, 1–14 (2016)
T. Liu, L. Wang, S.L. Karman Jr, C.B. Hilbert, Automatic 2d high-order viscous mesh generation by spring-field and vector-adding. in 54th AIAA Aerospace Sciences Meeting (2016)
W.L. Shoemake, Linear elastic mesh deformation via localized orthotropic material properties optimized by the adjoint method. Ph.D. thesis (Dean College, 2017)
X. Roca, A. Gargallo-Peiró, J. Sarrate, Defining quality measures for high-order planar triangles and curved mesh generation. in Proceedings of the 20th International Meshing Roundtable (Springer, Berlin, 2012), pp. 365–383
A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Distortion and quality measures for validating and generating high-order tetrahedral meshes. Eng. Comput. 1–15 (2014)
A. Gargallo Peiró, Validation and generation of curved meshes for high-order unstructured methods. Ph.D. thesis (Universitat Politècnica de Catalunya, 2014)
W. Lowrie, V. Lukin, U. Shumlak, A priori mesh quality metric error analysis applied to a high-order finite element method. J. Comput. Phys. 230(14), 5564–5586 (2011)
S.P. Sastry, R.M. Kirby, On interpolation errors over quadratic nodal triangular finite elements, in Proceedings of the 22nd International Meshing Roundtable (Springer, Berlin, 2014), pp. 349–366
M. Bergot, G. Cohen, M. Duruflé, Higher-order finite elements for hybrid meshes using new nodal pyramidal elements. J. Sci. Comput. 42(3), 345–381 (2010)
B.A. Szabo, I. Babuška, Finite element analysis (Wiley, New York, 1991)
A. Liu, B. Joe, On the shape of tetrahedra from bisection. Math. Comput. 63(207), 141–154 (1994)
A. Liu, B. Joe, Relationship between tetrahedron shape measures. BIT Numer. Math. 34(2), 268–287 (1994)
A. Johnen, Indirect quadrangular mesh generation and validation of curved finite elements, Ph.D. thesis (Université de Liège, 2016)
J. Dompierre, P. Labbé, F. Guibault, R. Camarero, Proposal of benchmarks for 3d unstructured tetrahedral mesh optimization, in Proceedings of the 7th International Meshing Roundtable (Citeseer, 1998)
P.M. Knupp, Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. part I—A framework for surface mesh optimization. Int. J. Numer. Methods Eng. 48(3), 401–420 (2000)
P.M. Knupp, Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. part II—A framework for volume mesh optimization and the condition number of the jacobian matrix. Int. J. Numer. Methods Eng. 48(8), 1165–1185 (2000)
S. Yamakawa, K. Shimada, Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Int. J. Numer. Methods Eng. 57(15), 2099–2129 (2003)
Y. Zhang, C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput. Methods Appl. Mech. Eng. 195(9), 942–960 (2006)
Y. Ito, A.M. Shih, B.K. Soni, Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int. J. Numer. Methods Eng. 77(13), 1809–1833 (2009)
M.L. Staten, R.A. Kerr, S.J. Owen, T.D. Blacker, M. Stupazzini, K. Shimada, Unconstrained plastering–Hexahedral mesh generation via advancing-front geometry decomposition. Int. J. Numer. Methods Eng. 81(2), 135–171 (2010)
N. Kowalski, F. Ledoux, P. Frey, Automatic domain partitioning for quadrilateral meshing with line constraints. Eng. Comput. 1–17 (2014)
J.H.-C. Lu, I. Song, W.R. Quadros, K. Shimada, Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing. Eng. Comput. 30(2), 237–252 (2014)
T.C. Baudouin, J.-F. Remacle, E. Marchandise, F. Henrotte, C. Geuzaine, A frontal approach to hex-dominant mesh generation. Adv. Model. Simul. Eng. Sci. 1(1), 1–30 (2014)
C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)
P.-L. George, H. Borouchaki, Delaunay triangulation and meshing: application to finite elements (Hermes, Paris, 1998)
J. Schöberl, Netgen an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci. 1(1), 41–52 (1997)
A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Int. J. Numer. Methods Eng.
E. Ruiz-Gironés, A. Gargallo-Peiró, J. Sarrate, X. Roca, An augmented lagrangian formulation to impose boundary conditions for distortion based mesh moving and curving. Procedia Eng. 203, 362–374 (2017)