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Abstract Wepresent amethod for computing robust shape qualitymeasures defined
for finite elements of any order and any type, including curved pyramids. The mea-
sures are heuristically defined as the minimum of the pointwise quality of curved
elements. Three pointwise qualities are considered: the ICN that is related to the
conditioning of the stiffness matrix for straight-sided simplicial elements, the scaled
Jacobian that is defined for quadrangles and hexahedra, and a new shape quality
that is defined for triangles and tetrahedra. Based on previous work presented by
Johnen et al. (Journal of Computational Physics 233:359–372, 2013, [1]); Johnen
and Geuzaine (Journal of Computational Physics 299:124–129, 2015, [2]), the com-
putation of the minimum of the pointwise qualities is efficient. The key feature is
to expand polynomial quantities into Bézier bases which allows to compute sharp
bounds on the minimum of the pointwise quality measures.

1 Introduction

With recent developments in the field of high-order finite element methods [3], such
as discontinuous Galerkin [4] or spectral [5, 6] methods, there is a renewed interest
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for high-order (curved) mesh generation. The classical finite element method, a.k.a.
the h-version, uses linear elements to discretize the geometry and the mesh is refined
in order to increase the accuracy of the solution. It has been established that the p-
version of the finite element, for which the order of the functions is increased in order
to improve the accuracy, may provide better convergence [7]. Eventually, “super-
convergence” can be obtained by a mix of the two approaches [8]. There has been
a frenzy in the 1980s to develop such methods, but developers encountered several
difficultieswhichhampered theirmomentum[9] and consequentlymost of the current
industrial-grade and commercial finite element packages are still based on at most
second-ordermeshes.One reason is that during the process of generating a high-order
curvilinear mesh, invalid (tangled) elements are often created, and untangling those
is not a trivial task. Recent methods have improved the robustness of the untangling
procedure through optimization, albeit at a high computational cost [10]. For this
reason, the tendency is to apply the technique only on small groups of elements in
the neighborhood of the invalid elements to untangle. It is therefore crucial to be able
to detect invalid and poor-quality curvilinear elements.

A finite element is defined by the position of its nodes through amapping between
a reference element and itself. Its validity can thus be assessed by verifying the
positivity of the determinant of the Jacobian of this mapping. It was thought for
years that the onlyway to determinewith certainty the validity of non-trivial elements
would be by computing the Jacobian determinant at an infinite number of points [11,
12]. Recent developments based on Bézier interpolation showed that it is nothing
of the sort. A first step has been taken in [13] where it is shown that it is possible
to compute bounds on the Jacobian determinant of second order tetrahedra; those
bounds are however not sharp. References [1, 2] provided a complete solution by
developing an adaptive technique for efficiently computing the minimum and the
maximum of the Jacobian determinant of any type and any order of elements, up to
any prescribed tolerance. This method subsequently allows to guarantee the validity
of any element.

Validity is one aspect that influences the accuracy of solution. Another aspect
is the quality of the finite elements. A distinction can be made between geometric
quality measures and Jacobian-based quality measures. Geometric quality measures
have been used since the very early days of finite element modeling and are con-
structed from geometric characteristics such as the area/volume of the element, the
length of the edges or the radii of the inscribed and circumscribed circles/spheres
[14, 15]. These geometric quality measures are however not easily generalizable to
curved elements—see e.g.[13] for the extension to quadratic tetrahedra. Jacobian-
based measures are a more natural fit, since the Jacobian matrix is defined for all
orders and types of element. A framework that allows the construction, classification,
and evaluation of such measures defined on linear elements has been proposed in
[16, 17]. It is important to understand that Jacobian-based measures are essentially
pointwise (within the element). For the linear triangles and tetrahedra, this is not a
problem since the Jacobian matrix is constant. For other elements, an element-wise
measure has to be extracted from the pointwise measure. In the two references above,
it is proposed to compute the measure at the corners of linear quadrangles and hex-
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ahedra and to take the minimum or the harmonic or geometric average. Similarly,
for quadratic triangles, the element-wise measure can be computed as the minimum,
maximum or the pth power-mean of the pointwise measure sampled at the six nodes
of the elements, although it is shown that in some situations this constitutes a poor
approximation of the true minimum, maximum or pth power-mean [12].

Many authors that have proposed curvilinear mesh generation techniques have
only considered the validity or the ratio between the minimum of the Jacobian deter-
minant over the maximum of the Jacobian determinant1 in order to validate their
resulting curved meshes [10, 18–26]. However, the Jacobian determinant only give
information on area/volume and cannot be used as a quality measure. The ratio
between the minimum and the maximum is neither a quality measure as highly
deformed elements can present a constant Jacobian determinant [10]. This motivates
the definition of proper quality measures for curved high-order finite elements.

Recent works have focused on defining a quality measure for curved simplicial
finite elements of anyorder [27, 28]. The general approach is to consider the inverse of
a Jacobian-based quality measure as proposed in [16], which constitutes a pointwise
distortion measure. The L2-norm is computed in order to have an element-wise
measure and the quality of the element is defined as the inverse of this element-wise
distortion. The chosen distortion is such that it goes to infinity for degenerate (invalid)
elements which implies that the corresponding quality vanishes. However, since the
distortion measure is not a polynomial (it is at best a rational function), no exact
computation of the measure is proposed and degenerate elements cannot robustly be
detected by this method. Although developed for simplicial elements, this technique
can be extended to non-simplicial elements, as shown in [29].

In this article, we propose to extend the method that efficiently computes the
extrema of the Jacobian determinant as proposed in [1, 2] to Jacobian-based quality
measures. Instead of computing the element-wise quality measure by simply taking a
norm, we aim at finding the actual bounds of the pointwise measure. Three measures
are considered: the ICN measure that is related to the conditioning of the stiffness
matrix, the scaled Jacobian that is well-known in the hexahedral mesh community
and a new one that is related to the error on the gradient of the finite element solution.
Note that the goal of this article is not to study the correlation of the proposed quality
measures with the error of finite element solutions, as e.g.. [30, 31]. Such study
would be the subject of future works.

The article is organized as follows. In Sect. 2, we begin by recalling the Jaco-
bian matrix of the different mappings before presenting the shape quality measures
considered in this article. In Sect. 3, we present the Bézier expansion, we recall the
algorithm for computing bounds on the validity of the elements and we give some
properties of Bézier expansions that are useful for computing bounds on the quality
measures. In Sect. 4, we explain how to compute those bounds. Finally, results are
presented in Sect. 5 and we conclude in Sect. 6.

1Note that those authors call this measure the “scaled Jacobian” while we use this name to denote
another measure largely used by the hexahedral mesh community.
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2 Definition of Quality Measures for Curvilinear Finite
Elements

2.1 Background

Let us consider a mesh of order n, which consists of a set of curved physical elements
that can either be triangles and/or quadrangles if the mesh has 2 dimensions or
tetrahedra, hexahedra, prisms and/or pyramids if the mesh has 3 dimensions. 3D
meshes are always defined in a 3 dimensional space. However, 2D meshes can either
live in the xy-plane or be embedded inside a 3D surface that is in general non-planar.
Let dm and ds denote respectively the dimension of the mesh and the dimension
of the physical space in which the mesh is embedded. Each physical element is
defined geometrically through a set of points of the physical space, called nodes, nk ∈
R

ds , k = 1, . . . , N and a set of Lagrange shape functions Ln
k (ξ) : Ωref ⊂ R

dm →
R, k = 1, . . . , N . These functions are polynomial and allow to map a reference unit
element, whose domain of definition is Ωref, onto the physical one (see Fig. 1):

x(ξ) =
N∑

k=1

Ln
k (ξ) nk . (1)

Among the considered elements, pyramids are quite particular. Those elementswhich
consist of a quadrangular base and four triangular faces have 4 edges that are incident
to the summit node and cannot be defined by a polynomial mapping. Many different
solutions have been proposed in the literature and among them, we consider the
definition proposed in [32] that has optimal error estimates in H 1-norm. Instead
of polynomials, the mapping is defined by rational functions. Nevertheless, it has
been shown that computing bounds on the Jacobian determinant of pyramids using
the technique described in [1] is done as if it was defined by polynomials [2]. For
simplicity, we will consider that all the elements have polynomial shape functions.

The Jacobian matrix of the mapping between the reference and the physical ele-
ment, denoted by JR, is in general not constant over the element: JR : Ωref →
R

ds×dm : ξ �→ JR(ξ). It is by definition the matrix of the first-order partial deriva-
tives, i.e. (JR)i j = ∂xi

∂ξ j
, which are polynomial functions. JR contains all the infor-

mation of the transformation of the reference element into the physical element and
can naturally be used to construct quality measures. However, as explained in [16], it
may be necessary to compare the physical element to an ideal element which defines
the ideal shape. This ideal element is usually the equilateral triangle or the square
for 2D elements. We note the Jacobian matrix of the mapping between the ideal and
the physical element J I. This matrix can be computed by the product J I = JR W−1,
where W is of dimension dm × dm and is the Jacobian matrix between the reference
and the ideal element. In this article, we assume thatW is a constant matrix, therefore
that the mapping between the reference and the ideal element is affine. We thus only
consider ideal elements that are linear, have planar faces and (when appropriate) have
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Fig. 1 We consider three mappings, each of them is characterized by a Jacobian matrix: (1) JR
for the mapping between the reference and the physical element, (2) W for the mapping between
the reference element and the ideal element and (3) J I for the mapping between the ideal and the
physical element

parallel opposite sides. For instance, the ideal quadrangle can be a parallelogram but
not a trapeze. This implies that the elements of J I remain polynomials, which is a
necessary condition for computing the bounds the way it is presented in this article.

Finite element analyses are subject to discretization and roundoff errors that should
be controlled. Those errors can be bounded by estimators that usually depend on the
mesh through the size, shape, orientation of the elements, etc. [33]. The shape of the
elements can also influence the speed of convergence of iterative methods. Quality
measures allow to quantify those influences and to comparemeshes. In the following,
we define three pointwise shape qualitymeasures. Some are orientation-sensitive, i.e.
they take an negative valuewhere the element is folded, and some are orientation-free.
In this article, we consider only valid elements that passes the algorithm presented in
[1] and for those elements, all the three measures take value between 0 and 1, with 1
being the quality of the perfect element.We also give a definition for the element-size
measure at the end of this section.

2.2 The ICN Measure

Finite element formulations are solved using either iterative or direct methods. In
iterative methods, it is highly desirable to minimize the condition number of the
stiffness matrix as it influences the speed of convergence. In direct methods, a high
condition number of the stiffness matrix rarely influence the computation time but
still can introduce roundoff error [15].

The inverse of the condition number, up to a constant factor, constitutes a shape
quality measure (see [16], Proposition 9.3). However, the condition number is hard
to compute and an equivalent measure is preferred. Let us consider the following
quantity defined on any given element E [16, 29, 34, 35]:



226 A. Johnen et al.

0 0.5 1
0

0.5

1

0.25
0.5

0.75

0 0.5 1
0

0.5

1

0.25
0.5

0.75

Fig. 2 The ICN measure for a straight-sided triangle when the ideal triangle is equilateral and the
bottom left corner of a straight-sided quadrangle when the ideal quadrangle is squared

ηpw(E, ξ) = dm |J I| 2
dm

||J I||2F
ξ ∈ Ωref , (2)

where |·| stands for the determinant of a squarematrix and ||·||F is the Frobenius norm
of a matrix, i.e. ||·||2F is the sum of the squares of the matrix elements. It follows from
Proposition 8.7 of [16] that this quantity is equivalent to the inverse of the condition
number. It subsequently measures the distance of J I to the set of singular matrices
(see Proposition 9.5 of the same paper). Thus, ηpw measures the pointwise distance
to a locally degenerate element. We call this measure ICN as short for the inverse
of the condition number. Figure 2 shows the contour plot of the ICN measure for a
linear triangle and a linear quadrangle. The measure takes the maximum value of 1
when the element is locally of the same shape than the ideal element.

Note that a more accurate measure for the conditioning of stiffness matrices has
been considered in [36] (see Sect. 3 and Appendix E). The algorithm to compute that
measure is however very complex and leads to computation times that are about 10
times higher than the measure we consider in this article.

2.3 The New Shape Quality Measure for Triangles and
Tetrahedra

In addition to the conditioning of the stiffness matrix, finite element analyses are
also subject to discretization errors. We can consider essentially two discretization
errors: the error on the solution and the error on the gradient of the solution. The
former is only influenced by the size of the elements (and no shape quality can be
derived). The latter is influenced by both the size and shape of the elements which
harden the derivation of a pure shape quality measure. For straight-sided simplices, it
is well-known that only large obtuse angles are bad for the error on the gradient [15].
The bound on the error on the gradient for a straight-sided triangle B depends on the
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length of the three edges, lmin, lmed and lmax, the area A and the inscribed radius rin:

B = c
lmax lmed (lmin + 4 rin)

4 A
,

where c is a constant (see Table 2 of [15]). Figure 3a represents this bound on a
contour plot. It goes to infinity for caps (triangles that have a large angle) but goes
to 1.5 c for needles (triangles that have a very small angle and the two other right).
This means that needles are clearly acceptable for this error and corresponding shape
quality measures should not go to zero for those shapes. A quality measure can be
derived by inverting this bound and multiplying by a characteristic length. Such a
quality measure has been proposed by Shewchuk by choosing as the characteristic
length the square root of the triangle area (see Table4 of [15]). This quality measure
is however not a pure shape quality measure since it goes to zero for needles (see
Fig. 3b).Actually, the choice of the square root of the triangle area as the characteristic
length amounts to compare elements of same area. In this condition, going from the
equilateral shape to a needle shape implies to increase some edge length up to the
infinity. The measure then goes to zero because of the size and not the shape.

Another choice of characteristic length is
√

lmedlmax which gives the expecting
behaviour as the measure goes to 0.83 for the needle (see Fig. 3c). Yet smooth quality
measures are preferable in order to be able to optimize meshes, which motivates us
to construct a new shape quality measure.

In 2D, let v1 and v2 be the two columns of the matrix JR and let us define another
vector: v3 := v2 − v1. The three vectors v1, v2 and v3 can be seen as the three edges
of the local infinitesimal triangle. For a straight-sided triangles, the 2-norm of those
vectors is equal to the length of the three edges. Moreover, the Jacobian determinant,
|JR|, can be seen as 2 times the area of the local infinitesimal triangle (and is exactly
2 times the area of a straight-sided triangle). Let ||·|| designate the 2-norm of a vector,
then the new shape quality measure for triangles is given by

μ2D
pw(E, ξ) = 2

3
√
3

( |JR|
||v1|| ||v2|| + |JR|

||v1|| ||v3|| + |JR|
||v2|| ||v3||

)
,

where the terms of the sum are constructed by dividing the Jacobian determinant
by the 2-norm of two vectors. Figure 3d shows the values that takes the new shape
quality measure for a straight-sided triangle.

The new shape quality measure for tetrahedra is constructed similarly. Let v1,
v2 and v3 be the three columns of the matrix JR and let us define the vectors:
v4 := v2 − v1, v5 := v3 − v1 and v6 := v3 − v2. Again, those vectors can be seen
as the edges of the local infinitesimal tetrahedron while |JR| can be seen as 6 times
its volume. The new shape quality measure for tetrahedra can be constructed by
summing terms that corresponds to the Jacobian determinant divided by the 2-norm
of three vectors. Among the set of the 20 possible triplet of vector, triplets of vectors
that are on a face cannot be used, as their product do not correspond to a volume.
The four triplets of vectors that touch a same node are not used either which imply
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Fig. 3 a The bound of the error on the gradient for a straight-sided triangle and the corresponding
quality measure obtained by inverting and multiplying by b

√
A and c

√
lmedlmax. d The new shape

quality measure for triangles. The three quality measures are normalized such that they are equal
to 1 for the equilateral triangle

a set of 12 triplets:

J ={(1, 6, 2), (2, 5, 1), (3, 4, 1),

(1, 6, 3), (2, 5, 3), (3, 4, 2),

(1, 6, 4), (2, 5, 4), (3, 4, 5),

(1, 6, 5), (2, 5, 6), (3, 4, 6)} .

Then, the quality measure for tetrahedra is given by
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μ3D
pw(E, ξ) = 1√

2

⎛

⎝
∑

(i, j,k)∈S

|JR|
||vi ||

∣∣∣∣v j

∣∣∣∣ ||vk ||

⎞

⎠ .

As usual, the quality of the equilateral triangle/tetrahedron is 1. In order to compare
this newqualitymeasurewith the smooth qualitymeasure proposed byShewchuk,we
look at the limit value of the two measures for the different shapes of the tetrahedron
(see Table 1).

It is known that some shape are bad for the error on the gradient of the finite
element solution and some other are good [15]. The new quality measure correctly
takes that into account while it is not the case of the quality measure proposed by
Shewchuk.We have to highlight that some authors have considered that shape quality
measures must be zero for degenerate elements [16, 37] which is not the case of the
new shape quality measure. We consider that the definition given by those authors is
too restrictive as Shewchuk have shown in [15] that needles (which have a degenerate
shape) are acceptable for the error on the gradient of finite element solutions.

2.4 The Scaled Jacobian Measure

The third quality measure we consider is the scaled Jacobian which is extensively
used for measuring the quality of quadrangles and hexahedra [38–46]. It is defined
as

Table 1 Limit values of the new quality measure compare to the one proposed by Shewchuk for
bounding the error on the gradient of the finite element solution [15] for different shapes of the
tetrahedron. The two quality measures are related to the error on the gradient of the finite element
solution. But only the new one has a limit value different from zero for needles, flat wedges and
long wedges, which are known to have only a slight impact on the gradient of the error. On the
contrary, slivers, caps and spades can degrade the error on the gradient up to infinity

Shape μpw Shewchuk [15]

Equilateral 1 1

Needle 0.61 0

Flat wedge 0.62 0

Long wedge 0.47 0

Sliver 0 0

Cap 0 0

Spade 0 0
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σpw(E, ξ) = |JR|
∏

j

∣∣∣∣v j

∣∣∣∣ .

Figure 4 represents this measure for a linear quadrangle. As the other measures, this
measure takes its value between 0 and 1, with 1 being for the best shape and 0 for
the worst.

2.5 Definition of an Element-Wise Measure

In order to define an element-wisemeasure for curved elements,we take theminimum
of the pointwise measure:

η(E) = min
ξ ∈Ωref

ηpw(E, ξ) , σ (E) = min
ξ ∈ Ωref

σpw(E, ξ) ,

μ(E) = min
ξ ∈ Ωref

μpw(E, ξ) .

The rationale behind this is that it is certainly possible to bound the error of the finite
element solution with this measure the same way we can bound the error by looking
at the worst element of straight-sidedmeshes (and similarly for the condition number
of the stiffness matrix).

3 Bézier Expansion: Definition and Properties

3.1 Definition

Polynomial quantities can be expanded into a so-called Bézier basis in order to make
use of the well-known Bézier expansion properties. We introduce in this section all
the concepts concerning the Bézier expansion that will be useful. Note that we use
themulti-index notation for which i = (i1, . . . , idm) is an ordered tuple of dm indices.

Fig. 4 The Scaled Jacobian
for the bottom left corner of
a quadrangle
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Let Bν
i (ξ) : Ωref ⊂ R

dm → R, i ∈ Iν denotes a Bézier function of order ν where
Iν is the index set of the Bézier functions. Both Bν

i and Iν depend on the type
of the element. The analytical expression of Bézier functions for linear, triangular,
quadrangular, tetrahedral, hexahedral and prismatic elements are given in [1] and
the expression for pyramidal elements is given in [2]. The set {Bν

i }i∈Iν defines the
Bézier basis of the polynomial space of order ν. Let f i denote the coefficients of
the expansion, also known as the control values. For any polynomial function f :
Ωref ⊂ R

dm → R of order at most ν, one can compute the control values such that
we have the equality

f (ξ) =
∑

i ∈Iν

f i Bν
i (ξ) ,

where the right member is the Bézier expansion of the function f .
TheBézier functions are positive and sumup to onewhich implies thewell-known

convex hull property. In our case, the convex hull property says that f is bounded
by the extrema of the control values, i.e. mini f i ≤ f (ξ) ≤ maxi f i . In addition
to that, there are control values that are actual values of the expanded function.
Those control values are “located” on the corners of the element 2 and we refer to
their index set by I ν

c . As a consequence, the control values allow to bound the two
extrema of the function from below and above. For example, for the minimum we
have: mini f i ≤ fmin ≤ mini∈I ν

c
f i .

3.2 Workflow

Those bounds, computed from the Bézier expansion, are not necessarily sharp. How-
ever, they can be sharpened by subdividing, i.e. by expanding the same function
defined on a smaller domain, called a subdomain. The smaller the subdomain, the
sharper the bounds. This subdivision can be implemented in a recursive and adaptive
manner which makes the method very efficient [1]. The algorithm for computing
sharp bounds on polynomial functions consists of four steps:

1. Sampling of the function on a given set of points.
2. Transformation of those values into Bézier coefficients (by a matrix-vector prod-

uct).
3. Computation of the bounds. If the sharpness is reached, return the bounds.
4. Subdivision (through a matrix-vector product). For each subdomain, go to step 3.

Gather the “subbounds” and compute and return the global bounds.

We propose to adapt this algorithm to the computation of bounds of ηpw, σpw and
μpw. As it will be seen in Sect. 4, only the third step has to be adapted.

2Let ξ c be the reference coordinates of one of the corners of the element. For any Bézier basis,
there exists an index j such that Bν

j (ξ c) = 1 and Bν
k (ξ c) = 0, ∀k ∈ Iν \ { j}. We have thus the

following equality: f (ξ c) = f j .
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3.3 Properties

Additional properties of the Bézier expansion will be needed and are given in this
section.

Proposition 1 Any Bézier function (even pyramidal) is of the canonical form
Bν
i (ξ) = αν

i mν
i (ξ), where the coefficient αν

i is a product of binomial coefficients
and mν

i is the elementary function.

As an example, let us consider the triangular Bézier functions3:

Bν
i1,i2(ξ, η) =

(
ν

i1

)(
ν − i1

i2

)
ξ i1 ηi2 (1 − ξ − η)ν−i1−i2 .

Its coefficient is αν
i1,i2

= (
ν

i1

)(
ν−i1

i2

)
and its elementary function is mν

i1,i2
(ξ) =

ξ i1 ηi2 (1 − ξ − η)ν−i1−i2 .

Proposition 2 The product of two elementary functions mν
i and mμ

j is an elementary

function equal to mν+μ

i+ j .

Example:

mν
i1, i2 mμ

j1, j2
= ξ i1+ j1 ηi2+ j2 (1 − ξ − η)ν+μ−(i1+ j1)−(i2+ j2) = mν+μ

i1+ j1, i2+ j2
.

Corollary 1 The product of two Bézier functions of order ν and μ is a Bézier function
of order ν + μ with an adjustment coefficient:

Bν
i Bμ

j = αν
i α

μ

j

α
ν+μ

i+ j

Bν+μ

i+ j .

Proposition 3 Let f and g be two polynomial functions of respective order ν and μ

and let f i , i ∈ Iν and g j , j ∈ Iμ be their respective control values. The product of
f and g is a polynomial function of order ν + μ whose control values hk are equal
to

hk =
∑

i∈Iν

j∈Iμ

i+ j=k

f i g j

αν
i α

μ

j

α
ν+μ

k

, ∀k ∈ Iν+μ .

Proof Using the definition of the Bézier expansion and Corollary 1, we have the
equalities

3Note that in the case of a 2D elements, themulti-index has 2 indiceswhich explains that i = (i1, i2).
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h = f g =
∑

i∈Iν

j∈Iμ

f i g j

αν
i α

μ

j

α
ν+μ

i+ j

Bν+μ

i+ j =
∑

k∈Iν+μ

∑

i∈Iν

j∈Iμ

i+ j=k

f i g j

αν
i α

μ

j

α
ν+μ

k

Bν+μ

k .

Proposition 4 Relaxation: Let f and g be two polynomial functions of order ν

and let f i and gi , i ∈ Iν be their respective control values. In order that f (ξ) ≤
g(ξ), ∀ξ ∈ Ωref, it is sufficient that f i ≤ gi , ∀i ∈ Iν .

Proof Since every Bézier function is positive on the reference domain,

f i ≤ gi ⇒ f i Bν
i (ξ) ≤ gi Bν

i (ξ) ∀ξ ∈ Ωref, ∀i ∈ Iν .

The last proposition can be used to compute bounds on more complex functions.
The following sections explain how to do it for rational functions and functions that

are similar to a quadratic mean, i.e. that are written
√

f 21 + f 22 + . . . where the fk

are polynomial functions.

3.4 Computing Bounds on Rational Functions

It is possible to compute bounds on rational functions whose denominator is known
to be strictly positive or strictly negative. There are four cases depending on the sign
of the denominator and on the specification of the required bound (lower or upper
bound). In the following, we detail the method for computing a lower bound in the
case of a strictly positive denominator. The adaptation for other cases is straightfor-
ward.

Let f
g (g > 0) be the rational function, with f and g two polynomial functions

and let rm denote the lower bound of this rational function wewant to compute. Since
g is strictly positive, the lower bound has to satisfy rm g ≤ f . Let f i and gi , i ∈ Iν

be the control values of their respective Bézier expansion. Taking advantage of the
relaxation (Proposition 4), we can solve the problem

max rm

s.t.rm gi ≤ f i ∀i ∈ Iν .

Note that the coefficients gi can take a negative value even if g is strictly positive. This
is an optimization problem with only one variable whose solution is straightforward.
The inequalities represent upper or lower bounds for rm in function of the sign of gi .
Two situationsmay occur. The global lower bound can be larger than the global upper
bound, in which case the problem has no feasible solution. In the other case, if the
global lower bound is smaller than the global upper bound, the solution is rm equal
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to the upper bound. Special cases happen when gi = 0. On the one hand, if f i ≥ 0,
the corresponding inequality is satisfied whatever the value of rm . On the other hand,
if f i < 0, the corresponding inequality cannot be satisfied and the problem has no
feasible solution.

3.5 Computing Bounds with Quadratic Mean-Like Functions

When a square root is present in an expression we want to bound, it may be possible
to square the expression in order to obtain only polynomials. However, it is possible
to construct a function that bounds from the above quadratic mean-like functions, as
proved by the following proposition:

Proposition 5 Let f and g be two polynomial functions of order ν and let f i and
gi be their control values. Let H be the function whose control values are Hi =√

f 2i + g2
i . Then, we have

√
f (ξ)2 + g(ξ)2 ≤ H(ξ) ∀ξ .

Proof Since the two members of the inequality are positive, we can square the
expression:

∑

i

f i Bν
i (ξ)

2 +
(

∑

i

gi Bν
i (ξ)

)2

≤
(

∑

i

√
f 2i + g2

i Bν
i (ξ)

)2

⇔
∑

i, j

(
f i f j + gi g j

)
Bν
i (ξ)Bν

j (ξ) ≤
∑

i, j

√
f 2i f 2j + f 2i g2

j + g2
i f 2j + g2

i g2
j Bν

i (ξ)Bν
j (ξ) .

By the relaxation of Proposition 4, it is sufficient to prove the inequalities

f i f j + gi g j ≤
√

f 2i f 2j + f 2i g2
j + g2

i f 2j + g2
i g2

j ∀i, j .

The right-hand member is positive which implies that it is sufficient to prove that the
relation holds when the members are squared. We obtain

2 f i f j gi g j ≤ f 2i g2
j + g2

i f 2j ∀i, j

⇔ 0 ≤ (
f i g j − gi f j

)2 ∀i, j ,

which is true. �

Note that this lemma can be generalized to any function of the form√
f 21 + f 22 + f 23 + . . . where the fk are polynomial functions. This result is use-

ful in order to avoid to compute more coefficients as it is shown in the following
section.
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4 Computing Bounds on the Quality Measures

The computation of bounds for the considered quality measures relies on the fact
that steps 1, 2 and 4 of the algorithm described in Sect. 3 are valid for any polyno-
mial function. We can thus identify polynomial components of a given measure and
directly apply steps 1, 2 and 4 to those components. Only the computation of the
bounds in replacement of the 3rd step has to be modified.

The three measures can be computed from the same polynomial components. Let
J denote the Jacobian matrix used in the measure (J I for the ICN and JR for the new
measure and the scaled Jacobian). Let ai, j , i, j = 1, . . . , dm denote the elements of
J . They are polynomial functions and can be expanded into the Bézier basis of the
mapping (1), i.e. into {Bn

i }i∈In . It is possible to compute the Jacobian determinant,
the Frobenius norm of J and the 2-norm of the columns of J (which are sufficient to
compute the three measures) only from the Bézier coefficients of the ai, j . However,
computing the Jacobian determinant from the ai, j is costly and we prefer to directly
expand |J |. Contrary to [1, 2], the Bézier basis in which it is expanded cannot be
reduced for certain types of elements, it has to be {B2n

i }i∈I2n for 2D elements and
{B3n

i }i∈I3n for 3D elements.

4.1 The ICN Measure

In 2D, the ICN measure is 2 |J I| / ||J I||2F , where ||J I||2F = ∑
i, j a2

i, j . The Bézier
coefficients of the numerator are available since it is the Jacobian determinant. The
denominator is also a polynomial function and the lower bound of the measure can
be computed by the rational function technique provided that the denominator is
expanded into the same Bézier basis than the numerator (Sect. 3.4). To do so, the
expansion of the terms a2

i, j is computed thanks to Proposition 3 and the Bézier
coefficients are summed in order to get the Bézier coefficients of the denominator.

In 3D, the measure is 3 |J I| 2
3 / ||J I||2F . In order to have a polynomial function at

the numerator, the expression can be raised to the power of 3
2 while still allowing us

to compute a bound. Indeed, since the exponentiation is a monotonic operation and
the measure is positive, whatever the bound r of η

3/2
pw we compute, we will have that

r
2
3 is a bound of ηpw. The denominator of the new expression is:

||J I||3F =
⎛

⎝

√√√√
3∑

i, j=1

a2
i, j

⎞

⎠
3

.

Due to the presence of the square root and since we are interested by a lower bound
of the measure, we compute an upper bounding function of ||J I||F by the technique
described in Sect. 3.5. Afterwards, we apply Proposition 3 in order to obtain an
expansion of the denominator into the same Bézier basis than the numerator. The
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rational function technique can then be applied in order to compute the lower bound
of the measure.

Let us recall that in 2D and 3D, an upper bound of the minimum of the measure
is computed from the “corner” coefficients as explained in Sect. 3.

4.2 The Scaled Jacobian

The technique for computing a lower bound of the scaled Jacobian for quadrangles
or hexahedra is the same. As for the other measure, we have to expand the denomina-
tor into the same Bézier basis than the numerator. The terms of the denominator are∣∣∣∣v j

∣∣∣∣ =
√∑

i a2
i, j . Sincewe are interested by a lower bound of themeasure, we com-

pute upper bounding functions Vj of
∣∣∣∣v j

∣∣∣∣ by the technique described in Sect. 3.5.
The expansion of the denominator is then obtained by applying Proposition 3 on∏

j Vj . Finally, the rational function technique gives the lower bound.

4.3 The New Measure

Each term of the new measure is exactly like the scaled Jacobian. It is then possible
to compute a lower bound for each term, which would require to compute the upper
bounding functions Vj in order to replace the

∣∣∣∣v j

∣∣∣∣. The sum of those bounds would
be a lower bound of the quality measure but it would not necessarily be sharp since
each term can take its global minimum at different points of the reference domain.

Instead, we transform the quality measure into a single fraction. We have

μ2D
pw(E, ξ) ≥ 2

3
√
3

|JR| (V1 + V2 + V3
)

V1 V2 V3
,

μ3D
pw(E, ξ) ≥ 1√

2

|JR|
(∑

(i, j,k)∈S Vi Vj Vk

)

V1 V2 V3 V4 V5 V6
.

As for the two other quality measures, the numerator and denominator have to be
expanded into the same Bézier basis. Then, the lower bound of the quality measure
is computed by the rational function technique.
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5 Results

The algorithm described in this article is implemented in Gmsh [47] and can be tested
through the plugin AnalyseCurvedMesh. We begin this section by testing two
linear hexahedra. Then, we test an academic hexahedral mesh with high differences
in aspect ratio. Finally, we test a realistic mesh composed of curved tetrahedra. All
the tests has been conducted on a Macbook Pro Retina, Mid 2012 @ 2.3GHz.

5.1 Single Hexahedron Test

Let us consider the case of a single hexahedron for which the nodes location is given
in Table 2 of reference [11]. This hexahedron has positive Jacobian determinant on
all the edges but is invalid. Traditional methods would compute a non-zero quality.
Our algorithm computes the correct value of η = σ = 0. Now let us consider a more
interesting case of a twisted hexahedron whose nodes location is given in Fig. 5.

This hexahedron is valid and the measures computed at a tolerance of 10−7

are in the range σ ∈ [0.6891687332, 0.6891687876] and η ∈ [0.5799706988,
0.5799707886]. The minimum of σpw at the corners of the element is 0.6963, which
is an error of 0.0071, while the minimum ηpw at the corners of the element is 0.6832,
i.e. a substantial error of 0.1032. In order to compare with the basic method which
consists in sampling the pointwise measure at a large number of points, let us con-
sider the nodes of an hexahedron of order p. We sample the measures at the location
of those nodes and compute the absolute error. As shown in Fig. 6, the error decreases
slowly. With p = 20, which corresponds to 9, 261 sampling points, the error is still
3.68 × 10−4 for the ICN measure and 2.27 × 10−5 for the scaled Jacobian.

Fig. 5 Twisted hex:
Location and ordering of the
nodes. Note that the
convention for node order
the one used in the Gmsh
software

i xi yi zi
1 −0.5 −1 −1
2 1 −1 −1
3 1 1 −1
4 −0.5 1 −1
5 1 −1 1
6 1 1 1
7 −1 1 1
8 −1 −1 1

1
2

3

4

5

6
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8

Z

X
Y
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Fig. 6 Twisted hex:
Absolute error of the
sampling of ηpw and σpw at
the nodes of an hexahedron
of order p
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5.2 Academic Hexahedral Mesh

We now test the measures on a series of academic meshes composed of structured
hexahedra. The meshes are generated with a mapping technique and presents high
differences in sizes and aspect ratio, see Fig. 7. Three meshes are generated: a linear
and a second-order mesh of 1,000,000 hexahedra and a third-order mesh of 125,000
hexahedra. For each mesh, the generation time and the time to compute the two
measures are reported at Table 2.We also report in the same table the time to compute
the validity of the different meshes, which corresponds to the time to compute the
minimum and the maximum of the Jacobian determinant [1].

It is important to highlight that the mapping technique is characterized by a par-
ticularly fast execution time in comparison to the generation of other kind of meshes.
Even though, the computation of one quality measure in those three tests is at most
29 times slower than the generation (for computing the scaled Jacobian on the third-
order mesh). Compared to validity computation, the computation of one quality is at
most 4.8 times slower (for computing the scaled Jacobian on the second-order mesh).

Fig. 7 Hex mesh: Coarse
version (with 8,000
hexahedra) of the academic
1,000,000 and 125,000
hexahedra test cases
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Fig. 8 Hex mesh: Worst (left) and best (right) quality elements of the coarse mesh

The worst and best elements according to the scaled Jacobian are shown in Fig. 8.
As expected, the best elements have nearly the shape of a rectangular parallelepiped
while the worst have large angles.

5.3 Realistic Curved Tetrahedral Mesh

Finally, we experiment the ICNmeasure (with the equilateral tetrahedron as the ideal
element) and the new shape quality measure on a more realistic geometry that is

Fig. 9 Curved tetrahedral mesh: The geometry models a sensor for a steel cable. The geometry
is composed of 4 coils (in orange), the cable (in blue) and the mounting box (in red). In purple and
in green are respectively the interior and the exterior meshes of the voids. Left: coarse mesh. Right:
fine mesh
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Table 2 Computation times of each test performed on the hexahedral and the tetrahedral mesh.
Times are given in seconds. The generation time comprises the creation of 1D, 2D and 3D ele-
ments, the topological optimization of tetrahedral meshes (using Netgen [49]) and the geometrical
optimization of high-order meshes (using [10]). T(η), T(σ ) and T(μ) are the times to compute the
measures described in this article while T(validity) is the time to compute [1]

Geometry #elements order #vertices T(gen.) T(validity) T(η) T(σ ) T(μ)

Hexahedron 1,000,000 1 1,030,301 0.52 2.71 8.50 9.56 –

Hexahedron 1,000,000 2 8,120,602 36.98 33.60 123.00 160.00 –

Hexahedron 125,000 3 3,442,944 14.54 92.21 315.00 419.00 –

Magnet 6,440 3 32,478 40.52 0.37 1.27 – 2.25

Magnet 6,440 4 74,539 920.17 3.12 11.65 – 27.66

Magnet 341,962 1 64,145 17.41 0.60 1.19 – 1.76

Magnet 341,962 2 484,469 29.14 0.91 1.89 – 3.79

Magnet 341,962 3 1,603,146 45.66 5.55 10.39 – 28.85

meshed with tetrahedra. A coarse and a fine mesh are generated and optimized using
the method presented in [10], see Fig. 9. In order to evaluate the computational cost
of the new shape quality measure on first-order (straight-sided) meshes, we compare
its computation time on the non-curved fine mesh with the computation time of a
well-known (and widely used) measure that is the ratio between the insphere radius
and the circumsphere radius [48]. The computation of the new measure takes 0.24
s/million tets while the computation of the ratio takes 0.49 s/million tets. This is
explained by the fact that only the volume and edge length is needed to compute
the new measure on straight-sided elements while the face area is also necessary to
compute the ratio.

The execution time for computing the quality measures for the curved meshes
is presented in Table 2. Note that, proportionally to the number of elements, the
geometrical optimization takes more times for the coarse mesh than for the fine
mesh because of the elongated/flat elements in the mountain box that are hard to
optimize. This explains the particularly long generation time for the coarse mesh
of order 4. A similar tendency appears with the computation of the validity and the
ICN measure which takes more time per element on the coarse mesh than on the
fine mesh. This is the consequence of a greater proportion of straight-sided elements
and the presence of curved elements that are less distorted in the fine mesh. On the
average, the number of subdivisions per element needed to reach the desired tolerance
is 0.0414 for the fine mesh of order 3 and 1.7888 for the coarse mesh of order 3.
The maximum number of subdivision on an element is 5 for the fine and 19 coarse
mesh of order 3. Contrary to the hexahedral mesh, the computation of the measures
for this tetrahedral mesh is smaller than the generation time. The worst elements of
the coarse mesh are shown in Fig. 10.
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Fig. 10 Curved
tetrahedral mesh: Worst
elements of the coarse mesh
according to the ICN
measure for an equilateral
tetrahedron as the ideal
element. Those elements are
as expected located inside
the mounting box

6 Conclusion

A method for computing the minimum of pointwise shape quality measures defined
for any order and any type of common finite elements (including pyramids) has been
presented. Three measures has been considered. The first one, the ICN measure,
gives the deviation of shape with respect to the ideal element, the distance of the
element to degeneracy and is also related to the conditioning of the stiffness matrix.
The second one, the scaled Jacobian, is defined for quadrangles and hexahedra and
is already widely used in the quadrangular/hexahedral mesh community. The third
one is a new shape quality measure that works for triangles and tetrahedra and that
is related to the error on the gradient of the finite element solution. The computation
is efficient and numerical experiments show that for realistic third-order tetrahedral
meshes the computation time of the quality measure is of the same order as the mesh
generation time.

The ICNmeasure works well for isotropic meshes provided that the ideal element
used to define the mapping is isotropic. This measure can possibly be extended for
anisotropic meshes if the ideal element is function of the local metric, similarly to
what has been done in [50]. The scaled Jacobian can be used when curved high
aspect ratio quadrangles and hexahedra are needed, as for example in boundary layer
meshes with high curvature. Those shape quality measures could give a robust base
for the optimization of curvilinear meshes [10, 50, 51].

As the proposed extension of quality measures defined for straight-sided element
to curved elements is heuristic, a study to show the correlation with the error of finite
element solutions is another possible future work.
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