lava lake; Nyiragongo; open-vent; photogrammetry; SAR shadows; seismicity; Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] Nyiragongo is one of the rare volcanoes on Earth hosting a lava lake. However, the understanding of its plumbing and lava lake systems remains limited, with, until recently, only sporadic or time-limited historical observations and measurements. Combining dense accurate lava lake and crater floor level measurements based on 1,703 satellite radar images and topographic reconstructions using photogrammetry, we obtain the first reliable picture and time evolution of intra-crater erupted lava volumes between the two last flank eruptions in January 2002 and May 2021. The filling of the crater by lava, initiated in 2002 and continued up to May 2021, is seen as an evidence of a long-term pressure build up of the magmatic system. This filling occurs through irregular pulsatory episodes of rising lava lake level, some of which overflow and solidify on the surrounding crater floor. Pauses of stable molten lava lake level and sudden numerous level drops also marked the summit's eruptive activity. The joint analysis with seismic records available since 2015 revealed that the largest lava lake drops are synchronous with seismic swarms associated with deep magma intrusions, generally preceded by an increase of extrusion rate within the crater. The appearance of a spatter cone in the summit crater in 2016, most likely superficially branched to the lava lake, was a clear marker of the change in eruption dynamics. This first long-term time series of Nyiragongo's crater topography between two hazardous flank eruptions might further help to better decipher Nyiragongo's past and future behavior using multi-parameter observations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Barrière, Julien ; European Center for Geodynamics and Seismology, Walferdange, Luxembourg
Nicolas, D.; European Center for Geodynamics and Seismology, Walferdange, Luxembourg ; Department of Geophysics/Astrophysics, National Museum of Natural History, Luxembourg City, Luxembourg
Smets, Benoît ; Natural Hazards Service, Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Cartography and GIS Research Group, Department of Geography, Vrije Universiteit Brussel, Ixelles, Belgium
Oth, Adrien ; European Center for Geodynamics and Seismology, Walferdange, Luxembourg
Delhaye, Louise; Natural Hazards Service, Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Cartography and GIS Research Group, Department of Geography, Vrije Universiteit Brussel, Ixelles, Belgium
Subira Muhindo, Josué ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Faculté des Sciences > Doct. sc. (géog. - paysage) ; Université de Liège - ULiège > Faculté des Sciences > Form. doct. sc. (géog. - paysage) ; Goma Volcano Observatory > Deapartement of Seismology
Derauw, Dominique ; Centre Spatial de Liège, Liège, Belgium ; Laboratorio de Estudio y Seguimiento de Volcanes Activos, Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Rio Negro, General Roca, Argentina
Smittarello, Delphine ; European Center for Geodynamics and Seismology, Walferdange, Luxembourg
This article results from the sum of several contributions obtained in the framework of past and ongoing research projects funded by the STEREO‐III Programme of the Belgian Science Policy Office (Belspo), and the Fonds National de la Recherche (FNR) of Luxembourg. These projects include RESIST (Contract SR/00/305), MUZUBI (Contract SR/00/324), and VeRSUS (Contract SR/00/382). The authors are grateful to ESA, Belspo, the Virunga Supersite Initiative, and Natural Resources Canada (NRCan) for providing satellites images (see Data Availability Statement). The authors thank the entire team of the Goma Volcano Observatory and the sentinels of the monitoring stations, without whom the operation of KivuSNet would be impossible. The authors also thank Halldór Geirsson (University of Iceland), Sergey Samsonov (NRCan), and Katcho Karume (GVO) for former collaboration on this work, as well as the Congolese Institute for Nature Preservation (ICCN) and the MONUSCO (UN stabilization mission in Congo) for their continuous support, including hosting seismic stations in their compounds. The SAsha method benefits from the Mex/C‐code written by Tom Goldstein (Univ. Maryland) implementing the Split‐Bregman algorithm ( https://www.ece.rice.edu/|tag7/Tom_Goldstein/Split_Bregman.html , last accessed 24 February 2022). The authors would like to thank the reviewers J. Suckale and M. Patrick and the editor M. Poland for their constructive comments and suggestions that have helped us improve the original manuscript.B. Smets bought the couple of IKONOS images (DigitalGlobe). The authors are grateful to ESA for providing the Sentinel‐1 and ENVISAT products for free, to Belspo and the Virunga Supersite Initiative for funding COSMO‐SkyMed images (Italian Space Agency) and to Natural Resources Canada (NRCan) for sharing RADARSAT‐2 images (Canadian Space Agency). Seismic data archiving and accessibility are ensured through the GEOFON program of the GFZ German Research Centre for Geosciences ( http://dx.doi.org/doi:10.14470/XI058335 ) and KivuSNet is registered within the FDSN with network code KV ( http://www.fdsn.org/networks/detail/KV/ ). All time series and seismic catalogs presented here are available as Supporting Information.This article results from the sum of several contributions obtained in the framework of past and ongoing research projects funded by the STEREO-III Programme of the Belgian Science Policy Office (Belspo), and the Fonds National de la Recherche (FNR) of Luxembourg. These projects include RESIST (Contract SR/00/305), MUZUBI (Contract SR/00/324), and VeRSUS (Contract SR/00/382). The authors are grateful to ESA, Belspo, the Virunga Supersite Initiative, and Natural Resources Canada (NRCan) for providing satellites images (see Data Availability Statement). The authors thank the entire team of the Goma Volcano Observatory and the sentinels of the monitoring stations, without whom the operation of KivuSNet would be impossible. The authors also thank Halld?r Geirsson (University of Iceland), Sergey Samsonov (NRCan), and Katcho Karume (GVO) for former collaboration on this work, as well as the Congolese Institute for Nature Preservation (ICCN) and the MONUSCO (UN stabilization mission in Congo) for their continuous support, including hosting seismic stations in their compounds. The SAsha method benefits from the Mex/C-code written by Tom Goldstein (Univ. Maryland) implementing the Split-Bregman algorithm (https://www.ece.rice.edu/|tag7/Tom_Goldstein/Split_Bregman.html, last accessed 24 February 2022). The authors would like to thank the reviewers J. Suckale and M. Patrick and the editor M. Poland for their constructive comments and suggestions that have helped us improve the original manuscript.
Agisoft, LLC. (2020). Agisoft Metashape user manual. Professional Edition.Version 1.6.
Allard, P. (1997). Endogenous magma degassing and storage at Mount Etna. Geophysical Research Letters, 24(17), 2219–2222. https://doi.org/10.1029/97gl02101
Anderson, K. R., Johanson, I. A., Patrick, M. R., Gu, M., Segall, P., Poland, M. P., et al. (2019). Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science, 366(6470). https://doi.org/10.1126/science.aaz1822
Anderson, K. R., Poland, M. P., Johnson, J. H., & Miklius, A. (2015). Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system: Chapter 11. In R.Carey, V.Cayol, M. P.Poland, & D.Weis (Eds.), Hawaiian volcanoes: From source to surface (Vol. 208, pp. 229–250). Washington, D.C. American Geophysical Union; John Wiley & Sons. https://doi.org/10.1002/9781118872079.ch11
Bakker, R. R., Fazio, M., Benson, P. M., Hess, K., & Dingwell, D. B. (2016). The propagation and seismicity of dyke injection, new experimental evidence. Geophysical Research Letters, 43, 1876–1883. https://doi.org/10.1002/2015gl066852
Balagizi, C. M., Yalire, M. M., Ciraba, H. M., Kajeje, V. B., Minani, A. S., Kinja, A. B., & Kasereka, M. M. (2016). Soil temperature and CO2 degassing, SO2 fluxes and field observations before and after the February 29, 2016 new vent inside Nyiragongo crater. Bulletin of Volcanology, 78(9), 1–11. https://doi.org/10.1007/s00445-016-1055-y
Barrière, J., d'Oreye, N., Oth, A., Theys, N., Mashagiro, N., Subira, J., et al. (2019). Seismicity and outgassing dynamics of Nyiragongo volcano. Earth and Planetary Science Letters, 528. https://doi.org/10.1016/j.epsl.2019.115821
Barrière, J., d'Oreye, N., Oth, A., Geirsson, H., Mashagiro, N., Johnson, J. B., et al. (2018). Single-station seismo-acoustic monitoring of Nyiragongo’ s lava lake activity, D.R. Congo. Frontiers of Earth Science, 6. https://doi.org/10.3389/feart.2018.00082
Barrière, J., Oth, A., Theys, N., d’Oreye, N., & Kervyn, F. (2017). Long-term monitoring of long-period seismicity and space-based SO2 observations at African lava lake volcanoes Nyiragongo and Nyamulagira (DR Congo). Geophysical Research Letters, 44(12), 6020–6029. https://doi.org/10.1002/2017GL073348
Beauducel, F. (2019). Mogi: Point source of dilatation in elastic half-space. MATLAB central file exchange. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/25943-mogi-point-source-of-dilatation-in-elastic-half-space
Bobrowski, N., Giuffrida, G. B., Yalire, M., Lübcke, P., Arellano, S., Balagizi, C., et al. (2017). Multi-component gas emission measurements of the active lava lake of Nyiragongo, DR Congo. Journal of African Earth Sciences, 134, 856–865. https://doi.org/10.1016/j.jafrearsci.2016.07.010
Browning, J., Meredith, P., & Gudmundsson, A. (2016). Cooling-dominated cracking in thermally stressed volcanic rocks. Geophysical Research Letters, 43(16), 8417–8425. https://doi.org/10.1002/2016GL070532
Brunner, D., Lemoine, G., Bruzzone, L., & Greidanus, H. (2010). Building height retrieval from VHR SAR imagery based on an iterative simulation and matching technique. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1487–1504. https://doi.org/10.1109/TGRS.2009.2031910
Buck, W. R., Einarsson, P., & Brandsdóttir, B. (2006). Tectonic stress and magma chamber size as controls on dike propagation: Constraints from the 1975–1984 Krafla rifting episode. Journal of Geophysical Research: Solid Earth, 111(B12). https://doi.org/10.1029/2005JB003879
Burgi, P.-Y., Boudoire, G., Rufino, F., Karume, K., & Tedesco, D. (2020). Recent activity of Nyiragongo (Democratic Republic of Congo): New insights from field observations and numerical modeling. Geophysical Research Letters, 47(17), 1–11. https://doi.org/10.1029/2020GL088484
Burgi, P.-Y., Darrah, T. H., Tedesco, D., & Eymold, W. K. (2014). Dynamics of the Mount Nyiragongo Lava Lake. Journal of Geophysical Research: Solid Earth, 119, 4106–4122. https://doi.org/10.1002/2013JB010895
Burgi, P.-Y., Minissale, S., Melluso, L., Mahinda, C. K., Cuoco, E., & Tedesco, D. (2018). Models of the formation of the 29 February 2016 new spatter cone inside Mount Nyiragongo. Journal of Geophysical Research: Solid Earth, 123(11), 9469–9485. https://doi.org/10.1029/2018JB015927
Carbone, D., Poland, M. P., Patrick, M. R., & Orr, T. R. (2013). Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i. Earth and Planetary Science Letters, 376, 178–185. https://doi.org/10.1016/j.epsl.2013.06.024
Chaussard, E., Amelung, F., & Aoki, Y. (2013). Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. Journal of Geophysical Research: Solid Earth, 118(8), 3957–3969. https://doi.org/10.1002/jgrb.50288
Coppola, D., Laiolo, M., Massimetti, F., & Cigolini, C. (2019). Monitoring endogenous growth of open-vent volcanoes by balancing thermal and SO2 emissions data derived from space. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-45753-4
Demant, A., Lestrade, P., Lubala, R. T., Kampunzu, A. B., & Durieux, J. (1994). Volcanological and petrological evolution of Nyiragongo volcano, Virunga volcanic field, Zaire. Bulletin of Volcanology, 56(1), 47–61. https://doi.org/10.1007/BF00279728
Derauw, D., Nicolas, d’.O., Jaspard, M., Caselli, A., & Samsonov, S. (2020). Ongoing automated ground deformation monitoring of Domuyo - Laguna del Maule area (Argentina) using Sentinel-1 MSBAS time series: Methodology description and first observations for the period 2015–2020. Journal of South American Earth Sciences, 104, 102850. https://doi.org/10.1016/j.jsames.2020.102850
Donaldson, C., Caudron, C., Green, R. G., Thelen, W. A., & White, R. S. (2017). Relative seismic velocity variations correlate with deformation at Kīlauea volcano. Science Advances, 3(6). https://doi.org/10.1126/sciadv.1700219
d’Oreye, N., Derauw, D., Samsonov, S., Jaspard, M., & Smittarello, D. (2021). MasTer: A full automatic multi-satellite InSAR mass processing tool for rapid incremental 2D ground deformation time series. Paper presented at the 2021 IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 1899–1902). https://doi.org/10.1109/IGARSS47720.2021.9553615
Durieux, J. (2002). Volcano Nyiragongo (D.R. Congo): Evolution of the crater lava lakes from the discovery to the present. Acta Vulcanologica, 14(15), 137–144.
Evernden, J. F. (1969). Identification of earthquakes and explosions by use of teleseismic data. Journal of Geophysical Research (1896-1977), 74(15), 3828–3856. https://doi.org/10.1029/JB074i015p03828
Francis, P., Oppenheimer, C., & Stevenson, D. (1993). Endogenous growth of persistently active volcanoes. Nature, 366(6455), 554–557. https://doi.org/10.1038/366554a0
Geirsson, H., d’Oreye, N., Mashagiro, N., Syauswa, M., Celli, G., Kadufu, B., et al. (2017). Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from six years of continuous GNSS observations of the Kivu Geodetic Network (KivuGNet). Journal of African Earth Sciences, 134(2017), 809–823. https://doi.org/10.1016/j.jafrearsci.2016.12.013
Geirsson, H., D’Oreye, N., Nobile, A., Smets, B., & Kervyn, F. (2019). Deformation of tectonic and volcanic origin in the greater Kivu region. In A.Oth, & N.D’Oreye (Eds.), Paper presented at the 100th Journées Luxembourgeoises de Géodynamique (pp. 25–27). Luxembourg.
Georiska. (2021). Nyiragongo’s lava lake activity resumes. Retrieved from https://georiska.africamuseum.be/en/news/NyiragongoLavaLakeActivity
Global Volcanism Program. (2021). Report on Nyiragongo (DR Congo). In K. L.Bennis, & E.Venzke (Eds.), Bulletin of the global volcanism network (Vol. 46, p. 6). Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN202106-223030
Goldstein, T., & Osher, S. (2009). The Split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343. https://doi.org/10.1137/080725891
Huppert, H. E., & Hallworth, M. A. (2007). Bi-directional flows in constrained systems. Journal of Fluid Mechanics, 578(May), 95–112. https://doi.org/10.1017/S0022112007004661
Kavotha, K. S., Mavonga, T., Durieux, J., & Mukambilwa, K. (2002). Towards a more detailed seismic picture of the January 17th, 2002 Nyiragongo eruption. Acta Vulcanologica, 14(15), 87–100.
Komorowski, J.-C., Tedesco, D., Kasereka, M., Allard, P., Papale, P., Vaselli, O., et al. (2002). The January 2002 flank eruption of Nyiragongo volcano (Democratic Republic of Congo): Chronology, evidence for a tectonic rift trigger, and impact of lava flows on the city of Goma. Acta Vulcanologica, 14(15), 27–62.
La Spina, G., Arzilli, F., Llewellin, E. W., Burton, M. R., Clarke, A. B., de’ Michieli Vitturi, M., et al. (2021). Explosivity of basaltic lava fountains is controlled by magma rheology, ascent rate and outgassing. Earth and Planetary Science Letters, 553, 116658. https://doi.org/10.1016/j.epsl.2020.116658
Lev, E., Ruprecht, P., Oppenheimer, C., Peters, N., Patrick, M., Hernández, P. A., et al. (2019). A global synthesis of lava lake dynamics. Journal of Volcanology and Geothermal Research, 381, 16–31. https://doi.org/10.1016/j.jvolgeores.2019.04.010
Micchelli, C. A., Shen, L., & Xu, Y. (2011). Proximity algorithms for image models: Denoising. Inverse Problems, 27(4). https://doi.org/10.1088/0266-5611/27/4/045009
Moore, C., Wright, T., Hooper, A., & Biggs, J. (2019). The 2017 Eruption of Erta ’Ale Volcano, Ethiopia: Insights into the shallow axial plumbing system of an incipient mid-ocean ridge. Geochemistry, Geophysics, Geosystems, 20(12), 5727–5743. https://doi.org/10.1029/2019GC008692
Morrison, A., Whittington, A., Smets, B., Kervyn, M., & Sehlke, A. (2020). The rheology of crystallizing basaltic lavas from Nyiragongo and Nyamuragira volcanoes. D.R.C. Volcanica, 3(1), 1–28. https://doi.org/10.30909/vol.03.01.0128
Oth, A., Barrière, J., D’Oreye, N., Mavonga, G., Subira, J., Mashagiro, N., et al. (2017). KivuSNet: The first dense broadband seismic network for the Kivu Rift region (Western branch of East African Rift). Seismological Research Letters, 88(1), 49–60. https://doi.org/10.1785/0220160147
Patrick, M. R., Anderson, K. R., Poland, M. P., Orr, T. R., & Swanson, D. A. (2015). Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology, 43(9), 831–834. https://doi.org/10.1130/G36896.1
Patrick, M. R., Houghton, B. F., Anderson, K. R., Poland, M. P., Montgomery-Brown, E., Johanson, I., et al. (2020). The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. Nature Communications, 11(1), 1–13. https://doi.org/10.1038/s41467-020-19190-1
Patrick, M. R., Swanson, D., & Orr, T. (2019). A review of controls on Lava Lake level: Insights from Halema‘uma‘u Crater, Kīlauea Volcano. Bulletin of Volcanology, 81(3), 13. https://doi.org/10.1007/s00445-019-1268-y
Pinel, V., Poland, M. P., & Hooper, A. (2014). Volcanology: Lessons learned from synthetic aperture radar imagery. Journal of Volcanology and Geothermal Research, 289, 81–113. https://doi.org/10.1016/j.jvolgeores.2014.10.010
Poiata, N., Satriano, C., Vilotte, J. P., Bernard, P., & Obara, K. (2016). Multiband array detection and location of seismic sources recorded by dense seismic networks. Geophysical Journal International, 205(3), 1548–1573. https://doi.org/10.1093/gji/ggw071
Pottier, Y. (1978). Première éruption historique du Nyiragongo et manifestations adventives simultanées du Volcan Nyamulagira (Chaîne des Virunga-Kivu-Zaire: Décembre 76-Juin 77). Musée Royal de l’Afrique Centrale (Tervuren, Belgium), Rapport Annuel (pp. 157–175).
Pouclet, A., & Bram, K. (2021). Nyiragongo and Nyamuragira: A review of volcanic activity in the Kivu rift, western branch of the East African Rift System. Bulletin of Volcanology, 83(2), 10. https://doi.org/10.1007/s00445-021-01435-6
Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F
Rupnik, E., Pierrot-Deseilligny, M., & Delorme, A. (2018). 3D reconstruction from multi-view VHR-satellite images in MicMac. ISPRS Journal of Photogrammetry and Remote Sensing, 139, 201–211. https://doi.org/10.1016/j.isprsjprs.2018.03.016
Rupnik, E., Pierrot Deseilligny, M., Delorme, A., & Klinger, Y. (2016). Refined satellite image orientation in the free open-source photogrammetric tools APERO/MICMAC. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-1, 83–90. https://doi.org/10.5194/isprs-annals-III-1-83-2016
Smets, B. (2016). Dynamics of volcanic activity in a youthful extensional setting studied by means of remote sensing and ground-based monitoring techniques: Nyiragongo and Nyamulagira volcanoes (North Kivu, D.R. Congo). Vrije Universiteit Brussel.
Smittarello, D., Barrière, J., D’Oreye, N., Smets, B., Oth, A., Shreve, T., et al. (2021). Propagation and arrest of the May 2021 lateral dike intrusion at Nyiragongo (D.R. Congo). Paper presented at the AGU 2021 fall meeting. New Orleans, LA. https://doi.org/10.1002/essoar.10509249.1
Stevenson, D. S., & Blake, S. (1998). Modelling the dynamics and thermodynamics of volcanic degassing. Bulletin of Volcanology, 60(4), 307–317. https://doi.org/10.1007/s004450050234
Tanaka, K. (1983). Seismicity and focal mechanism of the volcanic earthquakes in the Virunga volcanic region. In H.Hamaguchi (Ed.), Volcanoes Nyiragongo and Nyamuragira: Geophysical aspects (The Facult, pp. 19–28). Sendai, Japan.
Tapete, D., Cigna, F., & Donoghue, D. N. M. (2016). “Looting marks” in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sensing of Environment, 178, 42–58. https://doi.org/10.1016/j.rse.2016.02.055
Tedesco, D., Vaselli, O., Papale, P., Carn, S. A., Voltaggio, M., Sawyer, G., et al. (2007). January 2002 volcano-tectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. Journal of Geophysical Research, 112, B09202. https://doi.org/10.1029/2006JB004762
Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006
Wauthier, C., Cayol, V., Kervyn, F., & D’Oreye, N. (2012). Magma sources involved in the 2002 Nyiragongo eruption, as inferred from an InSAR analysis. Journal of Geophysical Research: Solid Earth, 117(5), 1–20. https://doi.org/10.1029/2011JB008257
Wauthier, C., Smets, B., & Keir, D. (2015). Diking-induced moderate-magnitude earthquakes on a youthful rift border fault: The 2002 Nyiragongo-Kalehe sequence, D.R. Congo. Geochemistry, Geophysics, Geosystems, 16(12), 4280–4291. https://doi.org/10.1002/2015GC006110
Witter, J. B., Kress, V. C., Delmelle, P., & Stix, J. (2004). Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, Southern Chile. Journal of Volcanology and Geothermal Research, 134(4), 303–337. https://doi.org/10.1016/j.jvolgeores.2004.03.002
Wright, R., & Flynn, L. P. (2003). Satellite observations of thermal emission before, during, and after the January 2002 eruption of Nyiragongo. Acta Vulcanologica, 14(1/2), 67. Retrieved from http://www.higp.hawaii.edu/|wright/acta15.pdf
Beckett, F. M., Burton, M., Mader, H. M., Phillips, J. C., Polacci, M., Rust, A. C., & Witham, F. (2014). Conduit convection driving persistent degassing at basaltic volcanoes. Journal of Volcanology and Geothermal Research, 283, 19–35. https://doi.org/10.1016/j.jvolgeores.2014.06.006
Bonvalot, S., Remy, D., Deplus, C., Diament, M., & Gabalda, G. (2008). Insights on the March 1998 eruption at Piton de la Fournaise volcano (La Réunion) from microgravity monitoring. Journal of Geophysical Research: Solid Earth, 113(5), 1–20. https://doi.org/10.1029/2007jb005084
Kettlety, T., Verdon, J. P., Werner, M. J., & Kendall, J. M. (2020). Stress transfer from opening hydraulic fractures controls the distribution of induced seismicity. Journal of Geophysical Research: Solid Earth, 125(1). https://doi.org/10.1029/2019jb018794