[en] The serine protease kallikrein-related peptidase 7 (KLK7) is a member of the human tissue kallikreins. Its dysregulation leads to pathophysiological inflammatory processes in the skin. Furthermore, it plays a role in several types of cancer. For the treatment of KLK7-associated diseases, coumarinic esters have been developed as small-molecule enzyme inhibitors. To characterize the inhibition mode of these inhibitors, we analyzed structures of the inhibited protease by X-ray crystallography. Electron density shows the inhibitors covalently attached to His57 of the catalytic triad. This confirms the irreversible character of the inhibition process. Upon inhibitor binding, His57 undergoes an outward rotation; thus, the catalytic triad of the protease is disrupted. Besides, the halophenyl moiety of the inhibitor was absent in the final enzyme-inhibitor complex due to the hydrolysis of the ester linkage. With these results, we analyze the structural basis of KLK7 inhibition by the covalent attachment of aromatic coumarinic esters.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Hanke, Stefanie; Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
Tindall, Catherine A; Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
Pippel, Jan; Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
Ulbricht, David; Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
Pirotte, Bernard ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Reboud-Ravaux, Michèle; Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Adaptation biologique et Vieillissement, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
Heiker, John T; Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany ; IFB Adiposity Diseases, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany ; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at Leipzig University and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
Sträter, Norbert ; Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
Language :
English
Title :
Structural Studies on the Inhibitory Binding Mode of Aromatic Coumarinic Esters to Human Kallikrein-Related Peptidase 7.
Egelrud, T. Purification and preliminary characterization of stratum corneum chymotryptic enzyme: a proteinase that may be involved in desquamation. J. Invest. Dermatol. 1993, 101, 200-204, 10.1111/1523-1747.ep12363804
Prassas, I.; Eissa, A.; Poda, G.; Diamandis, E. P. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat. Rev. Drug Discovery 2015, 14, 183-202, 10.1038/nrd4534
Kalinska, M.; Meyer-Hoffert, U.; Kantyka, T.; Potempa, J. Kallikreins-The melting pot of activity and function. Biochimie 2016, 122, 270-282, 10.1016/j.biochi.2015.09.023
Sondell, B.; Thornell, L. E.; Egelrud, T. Evidence that stratum corneum chymotryptic enzyme is transported to the stratum corneum extracellular space via lamellar bodies. J. Invest. Dermatol. 1995, 104, 819-823, 10.1111/1523-1747.ep12607007
Ishida-Yamamoto, A.; Simon, M.; Kishibe, M.; Miyauchi, Y.; Takahashi, H.; Yoshida, S.; O'Brien, T. J.; Serre, G.; Iizuka, H. Epidermal lamellar granules transport different cargoes as distinct aggregates. J. Invest. Dermatol. 2004, 122, 1137-1144, 10.1111/j.0022-202X.2004.22515.x
Ishida-Yamamoto, A.; Deraison, C.; Bonnart, C.; Bitoun, E.; Robinson, R.; O'Brien, T. J.; Wakamatsu, K.; Ohtsubo, S.; Takahashi, H.; Hashimoto, Y.; Dopping-Hepenstal, P. J. C.; McGrath, J. A.; Iizuka, H.; Richard, G.; Hovnanian, A. LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J. Invest. Dermatol. 2005, 124, 360-366, 10.1111/j.0022-202X.2004.23583.x
Ekholm, I. E.; Brattsand, M.; Egelrud, T. Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process?. J. Invest. Dermatol. 2000, 114, 56-63, 10.1046/j.1523-1747.2000.00820.x
Caubet, C.; Jonca, N.; Brattsand, M.; Guerrin, M.; Bernard, D.; Schmidt, R.; Egelrud, T.; Simon, M.; Serre, G. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 2004, 122, 1235-1244, 10.1111/j.0022-202X.2004.22512.x
Borgoño, C. A.; Michael, I. P.; Komatsu, N.; Jayakumar, A.; Kapadia, R.; Clayman, G. L.; Sotiropoulou, G.; Diamandis, E. P. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J. Biol. Chem. 2007, 282, 3640-3652, 10.1074/jbc.M607567200
Simon, M.; Jonca, N.; Guerrin, M.; Haftek, M.; Bernard, D.; Caubet, C.; Egelrud, T.; Schmidt, R.; Serre, G. Refined characterization of corneodesmosin proteolysis during terminal differentiation of human epidermis and its relationship to desquamation. J. Biol. Chem. 2001, 276, 20292-20299, 10.1074/jbc.M100201200
Descargues, P.; Deraison, C.; Prost, C.; Fraitag, S.; Mazereeuw-Hautier, J.; D'Alessio, M.; Ishida-Yamamoto, A.; Bodemer, C.; Zambruno, G.; Hovnanian, A. Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin-and chymotrypsin-like hyperactivity in Netherton syndrome. J. Invest. Dermatol. 2006, 126, 1622-1632, 10.1038/sj.jid.5700284
Morizane, S.; Yamasaki, K.; Kajita, A.; Ikeda, K.; Zhan, M.; Aoyama, Y.; Gallo, R. L.; Iwatsuki, K. TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2012, 130, 259.e1-261.e1, 10.1016/j.jaci.2012.03.006
Borgoño, C. A.; Diamandis, E. P. The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 2004, 4, 876-890, 10.1038/nrc1474
Ramani, V. C.; Hennings, L.; Haun, R. S. Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer. BMC Cancer 2008, 8, 373 10.1186/1471-2407-8-373
Haddada, M.; Draoui, H.; Deschamps, L.; Walker, F.; Delaunay, T.; Brattsand, M.; Magdolen, V.; Darmoul, D. Kallikrein-related peptidase 7 overexpression in melanoma cells modulates cell adhesion leading to a malignant phenotype. Biol. Chem. 2018, 399, 1099-1105, 10.1515/hsz-2017-0339
Zieger, K.; Weiner, J.; Kunath, A.; Gericke, M.; Krause, K.; Kern, M.; Stumvoll, M.; Klöting, N.; Blüher, M.; Heiker, J. T. Ablation of kallikrein 7 (KLK7) in adipose tissue ameliorates metabolic consequences of high fat diet-induced obesity by counteracting adipose tissue inflammation in vivo. Cell. Mol. Life Sci. 2018, 75, 727-742, 10.1007/s00018-017-2658-y
Debela, M.; Magdolen, V.; Schechter, N.; Valachova, M.; Lottspeich, F.; Craik, C. S.; Choe, Y.; Bode, W.; Goettig, P. Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J. Biol. Chem. 2006, 281, 25678-25688, 10.1074/jbc.M602372200
Heiker, J. T.; Klöting, N.; Kovacs, P.; Kuettner, E. B.; Sträter, N.; Schultz, S.; Kern, M.; Stumvoll, M.; Blüher, M.; Beck-Sickinger, A. G. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell. Mol. Life Sci. 2013, 70, 2569-2583, 10.1007/s00018-013-1258-8
Ulbricht, D.; Pippel, J.; Schultz, S.; Meier, R.; Sträter, N.; Heiker, J. T. A unique serpin P1′ glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin). Biochem. J. 2015, 470, 357-367, 10.1042/BJ20150643
Schechter, N. M.; Choi, E.-J.; Wang, Z.-M.; Hanakawa, Y.; Stanley, J. R.; Kang, Y.; Clayman, G. L.; Jayakumar, A. Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol. Chem. 2005, 386, 1173-1184, 10.1515/BC.2005.134
Krastel, P.; Liechty, B.-M.; Schmitt, E.; Schreiner, E. P. Use of Cyclic Depsipeptides to Inhibit Kallikrein 7. US20,130,172,267A1, 2013.
de Veer, S. J.; Furio, L.; Swedberg, J. E.; Munro, C. A.; Brattsand, M.; Clements, J. A.; Hovnanian, A.; Harris, J. M. Selective substrates and inhibitors for kallikrein-related peptidase 7 (KLK7) shed light on KLK proteolytic activity in the stratum corneum. J. Invest. Dermatol. 2017, 137, 430-439, 10.1016/j.jid.2016.09.017
Masurier, N.; Arama, D. P.; El Amri, C.; Lisowski, V. Inhibitors of kallikrein-related peptidases: An overview. Med. Res. Rev. 2018, 38, 655-683, 10.1002/med.21451
Pochet, L.; Doucet, C.; Schynts, M.; Thierry, N.; Boggetto, N.; Pirotte, B.; Jiang, K. Y.; Masereel, B.; Tullio, P. de.; Delarge, J.; Reboud-Ravaux, M. Esters and amides of 6-(chloromethyl)-2-oxo-2 H-1-benzopyran-3-carboxylic acid as inhibitors of alpha-chymotrypsin: significance of the "aromatic" nature of the novel ester-type coumarin for strong inhibitory activity. J. Med. Chem. 1996, 39, 2579-2585, 10.1021/jm960090b
Pochet, L.; Doucet, C.; Dive, G.; Wouters, J.; Masereel, B.; Reboud-Ravaux, M.; Pirotte, B. Coumarinic derivatives as mechanism-based inhibitors of alpha-chymotrypsin and human leukocyte elastase. Bioorg. Med. Chem. 2000, 8, 1489-1501, 10.1016/S0968-0896(00)00071-7
Tan, X.; Soualmia, F.; Furio, L.; Renard, J.-F.; Kempen, I.; Qin, L.; Pagano, M.; Pirotte, B.; El Amri, C.; Hovnanian, A.; Reboud-Ravaux, M. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J. Med. Chem. 2015, 58, 598-612, 10.1021/jm500988d
Doucet, C.; Pochet, L.; Thierry, N.; Pirotte, B.; Delarge, J.; Reboud-Ravaux, M. 6-Substituted 2-oxo-2 H-1-benzopyran-3-carboxylic acid as a core structure for specific inhibitors of human leukocyte elastase. J. Med. Chem. 1999, 42, 4161-4171, 10.1021/jm990070k
Fernández, I. S.; Ständker, L.; Mägert, H.-J.; Forssmann, W.-G.; Giménez-Gallego, G.; Romero, A. Crystal structure of human epidermal kallikrein 7 (hK7) synthesized directly in its native state in E. coli: insights into the atomic basis of its inhibition by LEKTI domain 6 (LD6). J. Mol. Biol. 2008, 377, 1488-1497, 10.1016/j.jmb.2008.01.089
Murafuji, H.; Sakai, H.; Goto, M.; Imajo, S.; Sugawara, H.; Muto, T. Discovery and structure-activity relationship study of 1,3,6-trisubstituted 1,4-diazepane-7-ones as novel human kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 5272-5276, 10.1016/j.bmcl.2017.10.030
Debela, M.; Hess, P.; Magdolen, V.; Schechter, N. M.; Steiner, T.; Huber, R.; Bode, W.; Goettig, P. Chymotryptic specificity determinants in the 1.0 A structure of the zinc-inhibited human tissue kallikrein 7. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16086-16091, 10.1073/pnas.0707811104
Maibaum, J.; Liao, S.-M.; Vulpetti, A.; Ostermann, N.; Randl, S.; Rüdisser, S.; Lorthiois, E.; Erbel, P.; Kinzel, B.; Kolb, F. A.; Barbieri, S.; Wagner, J.; Durand, C.; Fettis, K.; Dussauge, S.; Hughes, N.; Delgado, O.; Hommel, U.; Gould, T.; Mac Sweeney, A.; Gerhartz, B.; Cumin, F.; Flohr, S.; Schubart, A.; Jaffee, B.; Harrison, R.; Risitano, A. M.; Eder, J.; Anderson, K. Small-molecule factor D inhibitors targeting the alternative complement pathway. Nat. Chem. Biol. 2016, 12, 1105-1110, 10.1038/nchembio.2208
Murafuji, H.; Muto, T.; Goto, M.; Imajo, S.; Sugawara, H.; Oyama, Y.; Minamitsuji, Y.; Miyazaki, S.; Murai, K.; Fujioka, H. Discovery and structure-activity relationship of imidazolinylindole derivatives as kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 334-338, 10.1016/j.bmcl.2018.11.011
Zheng, X.; He, M.; Tan, X.; Zheng, J.; Wang, F.; Liu, S. 3D-quantitative structure-activity relationship and docking studies of coumarin derivatives as tissue kallikrein 7 inhibitors. J. Pharm. Pharmacol. 2017, 69, 1136-1144, 10.1111/jphp.12751
Buller, A. R.; Townsend, C. A. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E653-E661, 10.1073/pnas.1221050110
Murafuji, H.; Sugawara, H.; Goto, M.; Oyama, Y.; Sakai, H.; Imajo, S.; Tomoo, T.; Muto, T. Structure-based drug design to overcome species differences in kallikrein 7 inhibition of 1,3,6-trisubstituted 1,4-diazepan-7-ones. Bioorg. Med. Chem. 2018, 26, 3639-3653, 10.1016/j.bmc.2018.05.044
Debela, M.; Beaufort, N.; Magdolen, V.; Schechter, N. M.; Craik, C. S.; Schmitt, M.; Bode, W.; Goettig, P. Structures and specificity of the human kallikrein-related peptidases KLK 4, 5, 6, and 7. Biol. Chem. 2008, 389, 623-632, 10.1515/BC.2008.075
Murafuji, H.; Sakai, H.; Goto, M.; Oyama, Y.; Imajo, S.; Sugawara, H.; Tomoo, T.; Muto, T. Structure-based drug design of 1,3,6-trisubstituted 1,4-diazepan-7-ones as selective human kallikrein 7 inhibitors. Bioorg. Med. Chem. Lett. 2018, 28, 1371-1375, 10.1016/j.bmcl.2018.03.011
Reboud-Ravaux, M.; Desvages, G.; Chapeville, F. Irreversible inhibition and peptide mapping of urinary plasminogen activator urokinase. FEBS Lett. 1982, 140, 58-62, 10.1016/0014-5793(82)80520-6
Friedrich, R.; Fuentes-Prior, P.; Ong, E.; Coombs, G.; Hunter, M.; Oehler, R.; Pierson, D.; Gonzalez, R.; Huber, R.; Bode, W.; Madison, E. L. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J. Biol. Chem. 2002, 277, 2160-2168, 10.1074/jbc.M109830200
Reboud-Ravaux, M.; Wakselman, M. Quinone methides and aza-quinone methides as latent alkylating species in the design of mechanism-based inhibitors of serine proteases and β-lactamases. In Quinone Methides; Rokita, S. E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2009; pp 357-383.
Toteva, M. M.; Richard, J. P. The generation and reactions of quinone methides. Adv. Phys. Org. Chem. 2011, 45, 39-91, 10.1016/B978-0-12-386047-7.00002-3
Rudolph, R.; Lilie, H. In vitro folding of inclusion body proteins. FASEB J. 1996, 10, 49-56, 10.1096/fasebj.10.1.8566547
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 1993, 26, 795-800, 10.1107/S0021889893005588
Evans, P. R.; Murshudov, G. N. How good are my data and what is the resolution?. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2013, 69, 1204-1214, 10.1107/S0907444913000061
McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658-674, 10.1107/S0021889807021206
Emsley, P.; Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2126-2132, 10.1107/S0907444904019158
Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997, 53, 240-255, 10.1107/S0907444996012255
Bricogne, G.; Blanc, E.; Brandl, M.; Flensburg, C.; Keller, P.; Paciorek, W.; Roversi, P.; Sharff, A.; Smart, O. S.; Vonrhein, C.; Womack, T. O. BUSTER, version 2.10.3; Global Phasing Ltd., 2017.
Smart, O. S.; Womack, T. O.; Sharff, A.; Flensburg, C.; Keller, P.; Paciorek, W.; Vonrhein, C.; Bricogne, G. Grade, version 1.2.13; Global Phasing Ltd., 2011. http://www.globalphasing.com.
Liebschner, D.; Afonine, P. V.; Moriarty, N. W.; Poon, B. K.; Sobolev, O. V.; Terwilliger, T. C.; Adams, P. D. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr., Sect. D: Struct. Biol. 2017, 73, 148-157, 10.1107/S2059798316018210
Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781-1802, 10.1002/jcc.20289
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33-38, 10.1016/0263-7855(96)00018-5