Article (Scientific journals)
Clinical prediction models for diagnosis of COVID-19 among adult patients: a validation and agreement study.
Dardenne, Nadia; Locquet, Médéa; Diep, Anh Nguyet et al.
2022In BMC Infectious Diseases, 22 (1), p. 464
Peer Reviewed verified by ORBi
 

Files


Full Text
Dardenne_et_al-2022-BMC_Infectious_Diseases.pdf
Publisher postprint (1.32 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Agreement; COVID-19; Patients’ triage; Prediction models; Validation study; Infectious Diseases
Abstract :
[en] BACKGROUND: Since the beginning of the pandemic, hospitals have been constantly overcrowded, with several observed waves of infected cases and hospitalisations. To avoid as much as possible this situation, efficient tools to facilitate the diagnosis of COVID-19 are needed. OBJECTIVE: To evaluate and compare prediction models to diagnose COVID-19 identified in a systematic review published recently using performance indicators such as discrimination and calibration measures. METHODS: A total of 1618 adult patients present at two Emergency Department triage centers and for whom qRT-PCR tests had been performed were included in this study. Six previously published models were reconstructed and assessed using diagnostic tests as sensitivity (Se) and negative predictive value (NPV), discrimination (Area Under the Roc Curve (AUROC)) and calibration measures. Agreement was also measured between them using Kappa's coefficient and IntraClass Correlation Coefficient (ICC). A sensitivity analysis has been conducted by waves of patients. RESULTS: Among the 6 selected models, those based only on symptoms and/or risk exposure were found to be less efficient than those based on biological parameters and/or radiological examination with smallest AUROC values (< 0.80). However, all models showed good calibration and values above > 0.75 for Se and NPV but poor agreement (Kappa and ICC < 0.5) between them. The results of the first wave were similar to those of the second wave. CONCLUSION: Although quite acceptable and similar results were found between all models, the importance of radiological examination was also emphasized, making it difficult to find an appropriate triage system to classify patients at risk for COVID-19.
Disciplines :
Public health, health care sciences & services
Author, co-author :
Dardenne, Nadia   ;  Université de Liège - ULiège > Santé publique : de la Biostatistique à la Promotion de la Santé ; Université de Liège - ULiège > Département des sciences de la santé publique > Biostatistique
Locquet, Médéa  ;  Université de Liège - ULiège > Unité de recherche Santé publique, épidémiologie et économie de la santé (URSAPES)
Diep, Anh Nguyet  ;  Université de Liège - ULiège > Santé publique : de la Biostatistique à la Promotion de la Santé
GILBERT, Allison  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service des urgences
Delrez, Sophie ;  Centre Hospitalier Universitaire de Liège - CHU > > Service des urgences
BEAUDART, Charlotte ;  Université de Liège - ULiège > Unité de recherche Santé publique, épidémiologie et économie de la santé (URSAPES) ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Brabant, Christian ;  Université de Liège - ULiège > Département de Psychologie > Méta-recherche et éthique de la méthodologie quantitative
GHUYSEN, Alexandre ;  Centre Hospitalier Universitaire de Liège - CHU > > Service des urgences
Donneau, Anne-Françoise  ;  Université de Liège - ULiège > Santé publique : de la Biostatistique à la Promotion de la Santé ; Université de Liège - ULiège > Département des sciences de la santé publique > Biostatistique
BRUYERE, Olivier   ;  Université de Liège - ULiège > Unité de recherche Santé publique, épidémiologie et économie de la santé (URSAPES) ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
 These authors have contributed equally to this work.
Language :
English
Title :
Clinical prediction models for diagnosis of COVID-19 among adult patients: a validation and agreement study.
Publication date :
14 May 2022
Journal title :
BMC Infectious Diseases
eISSN :
1471-2334
Publisher :
Springer Science and Business Media LLC, England
Volume :
22
Issue :
1
Pages :
464
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 16 June 2022

Statistics


Number of views
149 (31 by ULiège)
Number of downloads
59 (12 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
4
OpenCitations
 
1
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi