Human skin; Penetration & permeation kinetics; Stratum corneum; Mathematical models; Franz cell diffusion; Tape stripping; Raman microspectroscopy
Abstract :
[en] The study of human skin represents an important area of research and development in dermatology, toxicology, pharmacology and cosmetology, in order to assess the effects of exogenous agents, their interaction, their absorption mechanism, and/or their toxicity towards the different cutaneous structures. The processes can be parameterised by mathematical models of diffusion, of varying degrees of complexity, and are commonly measured by Franz cell diffusion, in vitro, and tape stripping, in vitro or in vivo, techniques which are recognised by regulatory bodies for commercialisation of dermally applied products. These techniques do not directly provide chemically specific measurement of the penetration and/or permeation of formulations in situ, however.
Raman microspectroscopy provides a non-destructive, non-invasive and chemically specific methodology for in vitro, and in vivo investigations, in-situ, and can provide a powerful alternative to the current gold standard methods approved by regulatory bodies.
This review provides an analysis of the current state of art of the field of monitoring dermal penetration and permeation kinetics of topical products, in vitro and in vivo, as well as the regulatory requirements of international guidelines governing them. It furthermore outlines developments in the analysis of skin using Raman microspectroscopy, towards the most recent demonstrations of quantitative monitoring of the penetration and permeation kinetics of topical products in situ, for in vitro and in vivo applications, before discussing the challenges and future perspectives of the field.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Bielfeldt, S. ✱
Bonnier, F. ✱
Byrne, H.J. ✱
Chourpa, I. ✱
Dancik, Y. ✱
Lane, M.E. ✱
Lunter, D.J. ✱
Munnier, E. ✱
Puppels, G. ✱
Tfayli, A. ✱
Ziemons, Eric ✱; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
✱ These authors have contributed equally to this work.
Language :
English
Title :
Monitoring dermal penetration and permeation kinetics of topical products; the role of Raman microspectroscopy
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., Wolf, R., Structure and function of the epidermis related to barrier properties. Clin. Dermatol. 30 (2012), 257–262, 10.1016/j.clindermatol.2011.08.007.
Tfayli, A., Piot, O., Pitre, F., Manfait, M., Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. Eur. Biophys. J. 36 (2007), 1049–1058, 10.1007/s00249-007-0191-x.
Groenendaal, W., Von Basum, G., Schmidt, K.A., Hilbers, P.A.J., Van Riel, N.A.W., Quantifying the composition of human skin for glucose sensor development. J. Diabetes Sci. Technol. 4 (2010), 1032–1040, 10.1177/193229681000400502.
Ullah, S., Hamade, F., Bubniene, U., Engblom, J., Ramanavicius, A., Ramanaviciene, A., Ruzgas, T., In-vitro model for assessing glucose diffusion through skin, Biosens. Bioelectron 110 (2018), 175–179, 10.1016/j.bios.2018.03.039.
Ramanavicius, S., Ramanavicius, A., Conducting polymers in the design of biosensors and biofuel cells. Polymers (Basel) 13 (2021), 1–19, 10.3390/polym13010049.
Böhling, A., Bielfeldt, S., Himmelmann, A., Keskin, M., Wilhelm, K.P., Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy. Skin Res. Technol. 20 (2014), 50–57, 10.1111/srt.12082.
OECD. Guidance document for the conduct of skin absorption studies. https://doi.org/10.1787/9789264078796-en, 2004.
Caspers, P.J., Lucassen, G.W., Wolthuis, R., Bruining, H.A., Puppels, G.J., In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy 4 (1998), S31–S39, 10.1002/(sici)1520-6343 1998)4:5+3.0.co;2-m.
Förster, M., Bolzinger, M.A., Montagnac, G., Briançon, S., Confocal Raman microspectroscopy of the skin. Eur. J. Dermatol. 21 (2011), 851–863, 10.1684/ejd.2011.1494.
Dancik, Y., Bigliardi, P.L., Bigliardi-Qi, M., What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure. Reprod. Toxicol. 58 (2015), 252–281, 10.1016/j.reprotox.2015.10.001.
Niehues, H., Bouwstra, J.A., El Ghalbzouri, A., Brandner, J.M., Zeeuwen, P.L.J.M., van den Bogaard, E.H., 3D skin models for 3R research: the potential of 3D reconstructed skin models to study skin barrier function. Exp. Dermatol. 27 (2018), 501–511, 10.1111/exd.13531.
Sandby-Møller, J., Poulsen, T., Wulf, H.C., Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 83 (2003), 410–413, 10.1080/00015550310015419.
Egawa, M., Hirao, T., Takahashi, M., In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy. Acta Derm. Venereol. 87 (2007), 4–8, 10.2340/00015555-0183.
Choi, M.J., Maibach, H.I., Role of ceramides in barrier function of healthy and diseased skin. Am. J. Clin. Dermatol. 6 (2005), 215–223, 10.2165/00128071-200506040-00002.
Vavrova, K., Kovačik, A., Opalka, L., Ceramides in the skin barrier. Eur. Pharmaceut. J. 64 (2017), 28–35, 10.1515/afpuc-2017-0004.
van Smeden, J., Janssens, M., Gooris, G.S., Bouwstra, J.A., The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 1841 (2014), 295–313, 10.1016/j.bbalip.2013.11.006.
Boncheva, M., de Sterke, J., Caspers, P.J., Puppels, G.J., Depth profiling of stratum corneum hydration in vivo: a comparison between conductance and confocal Raman spectroscopic measurements. Exp. Dermatol. 18 (2009), 870–876, 10.1111/j.1600-0625.2009.00868.x.
Caspers, P.J., Lucassen, G.W., Bruining, H.A., Puppels, G.J., Automated depth-scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin. J. Raman Spectrosc. 31 (2000), 813–818, 10.1002/1097-4555(200008/09)31:8/9<813::AID-JRS573>3.0.CO.
Bouwstra, J.A., Groenink, H.W.W., Kempenaar, J.A., Romeijn, S.G., Ponec, M., Water distribution and natural moisturizer factor content in human skin equivalents are regulated by environmental relative humidity. J. Invest. Dermatol. 128 (2008), 378–388, 10.1038/sj.jid.5700994.
Kwan, P., Sills, G.J., Brodie, M.J., Understanding the role of NMF in skin hydration. Pract. Dermatology, 2012, 21–34 http://www.ncbi.nlm.nih.gov/pubmed/11448723.
Jepps, O.G., Dancik, Y., Anissimov, Y.G., Roberts, M.S., Modeling the human skin barrier - towards a better understanding of dermal absorption. Adv. Drug Deliv. Rev. 65 (2013), 152–168, 10.1016/j.addr.2012.04.003.
Valiveti, S., Lu, G.W., Diffusion properties of model compounds in artificial sebum. Int. J. Pharm. 345 (2007), 88–94, 10.1016/j.ijpharm.2007.05.043.
Valiveti, S., Wesley, J., Lu, G.W., Investigation of drug partition property in artificial sebum. Int. J. Pharm. 346 (2008), 10–16, 10.1016/j.ijpharm.2007.06.001.
Abe, A., Saito, M., Kadhum, W.R., Todo, H., Sugibayashi, K., Establishment of an evaluation method to detect drug distribution in hair follicles. Int. J. Pharm. 542 (2018), 27–35, 10.1016/j.ijpharm.2018.02.034.
Lauterbach, A., Müller-Goymann, C.C., Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur. J. Pharm. Biopharm. 97 (2015), 152–163, 10.1016/j.ejpb.2015.06.020.
Patzelt, A., Mak, W.C., Jung, S., Knorr, F., Meinke, M.C., Richter, H., Rühl, E., Cheung, K.Y., Tran, N.B.N.N., Lademann, J., Do nanoparticles have a future in dermal drug delivery?. J. Contr. Release 246 (2017), 174–182, 10.1016/j.jconrel.2016.09.015.
Abd, E., Benson, H.A.E., Roberts, M.S., Grice, J.E., Minoxidil skin delivery from nanoemulsion formulations containing eucalyptol or oleic acid: enhanced diffusivity and follicular targeting. Pharmaceutics 10 (2018), 1–12, 10.3390/pharmaceutics10010019.
Abd, E., Benson, H.A.E., Roberts, M.S., Grice, J.E., Follicular penetration of caffeine from topically applied nanoemulsion formulations containing penetration enhancers: in vitro human skin studies, skin pharmacol. Physiol. 31 (2018), 252–260, 10.1159/000489857.
Elias, P.M., Gruber, R., Crumrine, D., Menon, G., Williams, M.L., Wakefield, J.S., Holleran, W.M., Uchida, Y., Formation and functions of the corneocyte lipid envelope (CLE). Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 1841 (2014), 314–318, 10.1016/j.bbalip.2013.09.011.
Haftek, M., Epidermal barrier disorders and corneodesmosome defects. Cell Tissue Res. 360 (2015), 483–490, 10.1007/s00441-014-2019-1.
Halling-Overgaard, A.S., Kezic, S., Jakasa, I., Engebretsen, K.A., Maibach, H., Thyssen, J.P., Skin absorption through atopic dermatitis skin: a systematic review. Br. J. Dermatol. 177 (2017), 84–106, 10.1111/bjd.15065.
Liu, Y., Lunter, D.J., Systematic investigation of the effect of non-ionic emulsifiers on skin by confocal Raman spectroscopy—a comprehensive lipid analysis. Pharmaceutics, 12, 2020, 10.3390/pharmaceutics12030223.
Menon, G.K., Cleary, G.W., Lane, M.E., The structure and function of the stratum corneum. Int. J. Pharm. 435 (2012), 3–9, 10.1016/j.ijpharm.2012.06.005.
WHO | draft environmental health criteria (EHC): dermal exposure. (n.d.) https://www.who.int/ipcs/methods/dermal_exposure/en/.
Anissimov, Y.G., Jepps, O.G., Dancik, Y., Roberts, M.S., Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Adv. Drug Deliv. Rev. 65 (2013), 169–190, 10.1016/j.addr.2012.04.009.
Roberts, M.S., Solute-vehicle-skin interactions in percutaneous absorption: the principles and the people. Skin Pharmacol. Physiol. 26 (2013), 356–370, 10.1159/000353647.
Luo, L., Lane, M.E., Topical and transdermal delivery of caffeine. Int. J. Pharm. 490 (2015), 155–164, 10.1016/j.ijpharm.2015.05.050.
Pirot, F., Kalia, Y.N., Stinchcomb, A.L., Keating, G., Bunge, A., Guy, R.H., Characterization of the permeability barrier of human skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), 1562–1567, 10.1073/pnas.94.4.1562.
Bashir, S.J., Chew, A.L., Anigbogu, A., Dreher, F., Maibach, H.I., Physical and physiological effects of stratum corneum tape stripping. Skin Res. Technol. 7 (2001), 40–48, 10.1034/j.1600-0846.2001.007001040.x.
Löffler, H., Dreher, F., Maibach, H.I., Stratum corneum adhesive tape stripping: influence of anatomical site, application pressure, duration and removal. Br. J. Dermatol. 151 (2004), 746–752, 10.1111/j.1365-2133.2004.06084.x.
Quality and Equivalence of Topical Products | European Medicines Agency, (n.d.). https://www.ema.europa.eu/en/quality-equivalence-topical-products.
Franz, T.J., Percutaneous absorption. On the relevance of in vitro data. J. Invest. Dermatol. 64 (1975), 190–195, 10.1111/1523-1747.ep12533356.
Wagner, H., Kostka, K.H., Lehr, C.M., Schaefer, U.F., Drug distribution in human skin using two different in vitro test systems: comparison with in vivo data. Pharm. Res. 17 (2000), 1475–1481, 10.1023/A:1007648807195.
Herbig, M.E., Houdek, P., Gorissen, S., Zorn-Kruppa, M., Wladykowski, E., Volksdorf, T., Grzybowski, S., Kolios, G., Willers, C., Mallwitz, H., Moll, I., Brandner, J.M., A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin. Eur. J. Pharm. Biopharm. 95 (2015), 99–109, 10.1016/j.ejpb.2015.03.030.
Pharmacokinetics, P., Office of training and communications division of communications management drug information branch, Tel. http://www.fda.gov/cder/guidance.htm, 1999. (Accessed 16 January 2022)
Kalia, Y.N., Ion mobility across human stratum corneum in vivo. J. Pharm. Sci. 87 (1998), 1508–1511, 10.1021/js980247i.
Rawlings, A.V., Matts, P.J., Stratum Corneum Moisturization at the Molecular Level: an update in relation to the dry skin cycle. J. Invest. Dermatol. 124 (2005), 1099–1110, 10.1111/j.1523-1747.2005.23726.x.
Weigmann, H.-J., Jacobi, U., Antoniou, C., Tsikrikas, G.N., Wendel, V., Rapp, C., Gers-Barlag, H., Sterry, W., Lademann, J., Determination of penetration profiles of topically applied substances by means of tape stripping and optical spectroscopy: UV filter substance in sunscreens. J. Biomed. Opt., 10, 2005, 014009, 10.1117/1.1854683.
Pershing, L.K., Nelson, J.L., Corlett, J.L., Shrivastava, S.P., Hare, D.B., Shah, V.P., Assessment of dermatopharmacokinetic approach in the bioequivalence determination of topical tretinoin gel products. J. Am. Acad. Dermatol. 48 (2003), 740–751, 10.1067/mjd.2003.175.
OECD. OECD Guidleines 427 Skin Absorption: in Vivo Method. 2004, OECD, 10.1787/9789264071063-EN.
OECD Guideline for Testing of Chemicals. Test Guideline 428: Skin Absorption: in Vitro Method, 8, 2004, 10.1787/20745788.
Scientific Committee on Consumer Safety. Basic Criteria for the in Vitro Assessment of Dermal Absorption of Cosmetic Ingredients. 2010.
Franz, T.J., Lehman, P.A., Raney, S.G., Use of excised human skin to assess the bioequivalence of topical products. Skin Pharmacol. Physiol. 22 (2009), 276–286, 10.1159/000235828.
Lehman, P.A., Raney, S.G., Franz, T.J., Percutaneous absorption in man: in vitro-in vivo correlation, Skin Pharmacol. Physiol. 24 (2011), 224–230, 10.1159/000324884.
U.S. FDA. Draft guidance for industry on topical dermatological drug product NDAs and ANDAs-in vivo bioavailability, bioequivalence. Vitro Release and Associated Studies, 2002, Withdrawal.
Morais, J.A., Lobato, Mr, The New EMEA Guideline on the Investigation of Bioequivalence. 2009.
Zsikó, S., Csányi, E., Kovács, A., Budai-Szűcs, M., Gácsi, A., Berkó, S., Methods to evaluate skin penetration in vitro. Sci. Pharm., 87, 2019, 19, 10.3390/scipharm87030019.
Hofland, H.E.J., Bouwstra, J.A., Bodde, H.E., Spies, F., Junginger, H.E., Interactions between liposomes and human stratum corneum in vitro: freeze fracture electron microscopial visualization and small angle X-ray scattering studies. Br. J. Dermatol. 132 (1995), 853–866, 10.1111/j.1365-2133.1995.tb16940.x.
Bouwstra, J.A., de Vries, M.A., Gooris, G.S., Bras, W., Brussee, J., Ponec, M., Thermodynamic and structural aspects of the skin barrier. J. Contr. Release 15 (1991), 209–219, 10.1016/0168-3659(91)90112-Q.
Veiro, J.A., Cummins, P.G., Imaging of skin epidermis from various origins using confocal laser scanning microscopy. Dermatology 189 (1994), 16–22, 10.1159/000246752.
Swindle, L.D., Thomas, S.G., Freeman, M., Delaney, P.M., View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging. J. Invest. Dermatol. 121 (2003), 706–712, 10.1046/j.1523-1747.2003.12477.x.
Yu, B., Kim, K.H., So, P.T.C., Blankschtein, D., Langer, R., Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. J. Invest. Dermatol. 120 (2003), 448–455, 10.1046/j.1523-1747.2003.12061.x.
EMA, Committee for Medicinal Products for Human Use. Guideline on bioanalytical method validation. 2012 EMEA/CHMP/EWP/192217/2009.
Cristina, F., Vieira, L., Badra Bentley, M.V.L., Confocal laser scanning microscopy as a tool for the investigation of skin drug delivery systems and diagnosis of skin disorders. Confocal Laser Microsc. - Princ. Appl. Med. Biol. Food Sci., 2013, InTech, 10.5772/55995.
Byrne, H.J., Knief, P., Keating, M.E., Bonnier, F., Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem. Soc. Rev. 45 (2016), 1865–1878, 10.1039/c5cs00440c.
Barry, B.W., Edwards, H.G.M., Williams, A.C., Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands. J. Raman Spectrosc. 23 (1992), 641–645, 10.1002/jrs.1250231113.
Williams, A.C., Edwards, H.G.M., Barry, B.W., Fourier transform Raman spectroscopy a novel application for examining human stratum corneum. Int. J. Pharm., 81, 1992, 10.1016/0378-5173(92)90022-T R11–R14.
Scanlon, G., Connell, P., Ratzlaff, M., Foerg, B., McCartney, D., Murphy, A., O'Connor, K., Loughman, J., Macular pigment optical density is lower in type 2 diabetes, compared with type 1 diabetes and normal controls. Retina 35 (2015), 1808–1816, 10.1097/IAE.0000000000000551.
Denson, S.C., Pommier, C.J.S., Denton, M.B., The impact of array detectors on Raman spectroscopy. J. Chem. Educ. 84 (2007), 67–74, 10.1021/ed084p67.
Ali, S.M., Bonnier, F., Lambkin, H., Flynn, K., McDonagh, V., Healy, C., Lee, T.C., Lyng, F.M., Byrne, H.J., A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections. Anal. Methods 5 (2013), 2281–2291, 10.1039/c3ay40185e.
Jaafar, A., Holomb, R., Sdobnov, A.Y., Ocskay, Z., Jakus, Z., Tuchin, V.V., Veres, M., Ex vivo confocal Raman microspectroscopy of porcine dura mater supported by optical clearing. J. Biophot., 2021, e202100332, 10.1002/jbio.202100332.
Jaafar, A., Mahmood, M.H., Holomb, R., Himics, L., Váczi, T., Sdobnov, A.Y., Tuchin, V.V., Veres, M., Ex-vivo confocal Raman microspectroscopy of porcine skin with 633/785-NM laser excitation and optical clearing with glycerol/water/DMSO solution. J. Innov. Opt. Health Sci. 14 (2021), 2021–2035, 10.1142/S1793545821420037.
Darvin, M.E., Schleusener, J., Lademann, J., Choe, C.-S., Current views on non-invasive in vivo determination of physiological parameters of the stratum corneum using confocal Raman microspectroscopy. Skin Pharmacol. Physiol., 2022, 10.1159/000521416.
Caspers, P.J., Lucassen, G.W., Carter, E.A., Bruining, H.A., Puppels, G.J., In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J. Invest. Dermatol. 116 (2001), 434–442, 10.1046/j.1523-1747.2001.01258.x.
Crowther, J.M., Sieg, A., Blenkiron, P., Marcott, C., Matts, P.J., Kaczvinsky, J.R., Rawlings, A.V., Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br. J. Dermatol. 159 (2008), 567–577, 10.1111/j.1365-2133.2008.08703.x.
Crowther, J.M., Matts, P.J., Kaczvinsky, J.R., Changes in stratum corneum thickness, water gradients and hydration by moisturizers. Treat. Dry Ski. Syndr. Art Sci. Moisturizers, 2012, Springer-Verlag Berlin Heidelberg, 545–560, 10.1007/978-3-642-27606-4_38.
Bielfeldt, S., Schoder, V., Ely, U., van der Pol, A., de Sterke, J., Wilhelm, K.-P., Assessment of human stratum corneum thickness and its barrier properties by in-vivo confocal Raman spectroscopy. Int. J. Cosmet. Sci. 31 (2009), 479–480, 10.1111/j.1468-2494.2009.00532_2.x.
Hancewicz, T.M., Xiao, C., Weissman, J., Foy, V., Zhang, S., Misra, M., A consensus modeling approach for the determination of stratum corneum thickness using in-vivo confocal Raman spectroscopy. J. Cosmet. Dermatological Sci. Appl. 2 (2012), 241–251, 10.4236/jcdsa.2012.24046.
Stella, A., Bonnier, F., Tfayli, A., Yvergnaux, F., Byrne, H.J., Chourpa, I., Munnier, E., Tauber, C., Raman mapping coupled to self-modelling MCR-ALS analysis to estimate active cosmetic ingredient penetration profile in skin. J. Biophot., 13, 2020, 10.1002/jbio.202000136.
Franzen, L., Anderski, J., Windbergs, M., Quantitative detection of caffeine in human skin by confocal Raman spectroscopy - a systematic in vitro validation study. Eur. J. Pharm. Biopharm. 95 (2015), 110–116, 10.1016/j.ejpb.2015.03.026.
Tfaili, S., Josse, G., Angiboust, J.F., Manfait, M., Piot, O., Monitoring caffeine and resveratrol cutaneous permeation by confocal Raman microspectroscopy. J. Biophot. 7 (2014), 676–681, 10.1002/jbio.201300011.
Tfaili, S., Gobinet, C., Josse, G., Angiboust, J.F., Baillet, A., Manfait, M., Piot, O., Vibrational spectroscopies for the analysis of cutaneous permeation: experimental limiting factors identified in the case of caffeine penetration. Anal. Bioanal. Chem. 405 (2013), 1325–1332, 10.1007/s00216-012-6512-7.
Liu, Y., Krombholz, R., Lunter, D.J., Critical parameters for accurate monitoring of caffeine penetration in porcine skin using confocal Raman spectroscopy. Int. J. Pharm., 607, 2021, 10.1016/j.ijpharm.2021.121055.
Bakar, J., Michael-Jubeli, R., El Khoury, R., Hamla, S., Assi, A., Baillet-Guffroy, A., Tfayli, A., Assessment of the skin barrier function in the reconstructed human epidermis using a multimodal approach at molecular, tissue and functional levels. Analyst 146 (2021), 4649–4658, 10.1039/d1an00465d.
Miloudi, L., Bonnier, F., Tfayli, A., Yvergnaux, F., Byrne, H.J., Chourpa, I., Munnier, E., Confocal Raman spectroscopic imaging for in vitro monitoring of active ingredient penetration and distribution in reconstructed human epidermis model. J. Biophot., 11, 2018, 10.1002/jbio.201700221.
Essendoubi, M., Alsamad, F., Noël, P., Meunier, M., Scandolera, A., Sandré, J., Manfait, M., Gobinet, C., Reynaud, R., Piot, O., Combining Raman imaging and MCR-ALS analysis for monitoring retinol permeation in human skin. Skin Res. Technol. 27 (2021), 1100–1109, 10.1111/srt.13069.
Choimet, M., Tourrette, A., Marsan, O., Rassu, G., Drouet, C., Bio-inspired apatite particles limit skin penetration of drugs for dermatology applications. Acta Biomater. 111 (2020), 418–428, 10.1016/j.actbio.2020.05.010.
Van Gheluwe, L., Munnier, E., Kichou, H., Kemel, K., Mahut, F., Vayer, M., Sinturel, C., Byrne, H.J., Yvergnaux, F., Chourpa, I., Bonnier, F., Confocal Raman spectroscopic imaging for evaluation of distribution of nano-formulated hydrophobic active cosmetic ingredients in hydrophilic films. Molecules, 26, 2021, 7440, 10.3390/molecules26247440.
Bronaugh, R.L., Stewart, R.F., Methods for in vitro percutaneous absorption studies IV: the flow-through diffusion cell. J. Pharm. Sci. 74 (1985), 64–67, 10.1002/jps.2600740117.
Bonnist, E.Y.M., Gorce, J.P., MacKay, C., Pendlington, R.U., Pudney, P.D.A., Measuring the penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal Raman spectroscopy. Skin Pharmacol. Physiol. 24 (2011), 274–283, 10.1159/000328729.
Pendlington, R.U., Minter, H.J., Stupart, L., MacKay, C., Roper, C.S., Sanders, D.J., Pease, C.K., Development of a modified in vitro skin absorption method to study the epidermal/dermal disposition of a contact allergen in human skin. Cutan. Ocul. Toxicol. 27 (2008), 283–294, 10.1080/15569520802327005.
Lunter, D., Daniels, R., Confocal Raman microscopic investigation of the effectiveness of penetration enhancers for procaine delivery to the skin. J. Biomed. Opt., 19, 2014, 126015, 10.1117/1.jbo.19.12.126015.
Touitou, E., Meidan, V.M., Horwitz, E., Methods for quantitative determination of drug localized in the skin. J. Contr. Release 56 (1998), 7–21, 10.1016/S0168-3659(98)00060-1.
Krombholz, R., Lunter, D., A new method for in-situ skin penetration aAnalysis by confocal Raman microscopy. Molecules, 25, 2020, 10.3390/molecules25184222.
Ruan, J., Liu, C., Song, H., Zhong, T., Quan, P., Fang, L., Sustainable and efficient skin absorption behaviour of transdermal drug: the effect of the release kinetics of permeation enhancer. Int. J. Pharm., 612, 2022, 121377, 10.1016/j.ijpharm.2021.121377.
Sigg, M., Daniels, R., Impact of alkanediols on stratum corneum lipids and triamcinolone acetonide skin penetration. Pharmaceutics, 13, 2021, 10.3390/pharmaceutics13091451.
Liu, Y., Lunter, D.J., Profiling skin penetration using PEGylated emulsifiers as penetration enhancers via confocal Raman spectroscopy and fluorescence spectroscopy. Eur. J. Pharm. Biopharm. 166 (2021), 1–9, 10.1016/j.ejpb.2021.04.027.
Chrit, L., Bastien, P., Sockalingum, G.D., Batisse, D., Leroy, F., Manfait, M., Hadjur, C., An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Skin Pharmacol. Physiol. 19 (2006), 207–215, 10.1159/000093116.
Chrit, L., Bastien, P., Biatry, B., Simonnet, J.T., Potter, A., Minondo, A.M., Flament, F., Bazin, R., Sockalingum, G.D., Leroy, F., Manfait, M., Hadjur, C., In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent pMPC. Biopolymers 85 (2007), 359–369, 10.1002/bip.20644.
Tippavajhala, V.K., Magrini, T.D., Matsuo, D.C., Silva, M.G.P., Favero, P.P., De Paula, L.R., Martin, A.A., In vivo determination of moisturizers efficacy on human skin hydration by confocal Raman spectroscopy. AAPS PharmSciTech 19 (2018), 3177–3186, 10.1208/s12249-018-1143-8.
Caspers, P.J., Williams, A.C., Carter, E.A., Edwards, H.G.M., Barry, B.W., Bruining, H.A., Puppels, G.J., Monitoring the penetration enhancer dimethyl sulfoxide in human stratum corneum in vivo by confocal Raman spectroscopy. Pharm. Res. 19 (2002), 1577–1580, 10.1023/A:1020481305420.
Xiao, C., Moore, D.J., Rerek, M.E., Flach, C.R., Mendelsohn, R., Feasibility of tracking phospholipid permeation into skin using infrared and Raman microscopic imaging. J. Invest. Dermatol. 124 (2005), 622–632, 10.1111/j.0022-202X.2004.23608.x.
Wascotte, V., Caspers, P., De Sterke, J., Jadoul, M., Guy, R.H., Préat, V., Assessment of the “skin reservoir” of urea by confocal Raman microspectroscopy and reverse iontophoresis in vivo. Pharm. Res. 24 (2007), 1897–1901, 10.1007/s11095-007-9314-4.
Pudney, P.D.A., Mélot, M., Caspers, P.J., Van Der Pol, A., Puppels, G.J., An in vivo confocal Raman study of the delivery of trans-retinol to the skin. Appl. Spectrosc. 61 (2007), 804–811, 10.1366/000370207781540042.
Mélot, M., Pudney, P.D.A., Williamson, A.M., Caspers, P.J., Van Der Pol, A., Puppels, G.J., Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy. J. Contr. Release 138 (2009), 32–39, 10.1016/j.jconrel.2009.04.023.
Mateus, R., Abdalghafor, H., Oliveira, G., Hadgraft, J., Lane, M.E., A new paradigm in dermatopharmacokinetics-Confocal Raman spectroscopy. Int. J. Pharm. 444 (2013), 106–108, 10.1016/j.ijpharm.2013.01.036.
Caspers, P.J., Nico, C., Bakker Schut, T.C., Sterke, J., Pudney, P.D.A., Curto, P.R., Illand, A., Puppels, G.J., Method to quantify the in vivo skin penetration of topically applied materials based on confocal Raman spectroscopy. Transl. Biophotonics, 1, 2019, 10.1002/tbio.201900004.
Iliopoulos, F., Lane, M.E., Caspers, P.J., Puppels, G.J., Franz cell diffusion testing and quantitative confocal Raman spectroscopy: in vitro-in vivo correlation. Pharmaceutics 12 (2020), 1–12, 10.3390/pharmaceutics12090887.
Patzelt, A., Lademann, J., Recent advances in follicular drug delivery of nanoparticles. Expet Opin. Drug Deliv. 17 (2020), 49–60, 10.1080/17425247.2020.1700226.
Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E., Makaroff, L.E., IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128 (2017), 40–50, 10.1016/j.diabres.2017.03.024.
Parachalil, D.R., Bruno, C., Bonnier, F., Blasco, H., Chourpa, I., Baker, M.J., McIntyre, J., Byrne, H.J., Analysis of bodily fluids using vibrational spectroscopy: a direct comparison of Raman scattering and infrared absorption techniques for the case of glucose in blood serum. Analyst 144 (2019), 3334–3346, 10.1039/c9an00125e.
Stuart, D.A., Yuen, J.M., Shah, N., Lyandres, O., Yonzon, C.R., Glucksberg, M.R., Walsh, J.T., Van Duyne, R.P., In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78 (2006), 7211–7215, 10.1021/ac061238u.
Ma, K., Yuen, J.M., Shah, N.C., Walsh, J.T., Glucksberg, M.R., Van Duyne, R.P., In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83 (2011), 9146–9152, 10.1021/ac202343e.
Pandey, R., Paidi, S.K., Valdez, T.A., Zhang, C., Spegazzini, N., Dasari, R.R., Barman, I., Noninvasive monitoring of blood glucose with Raman spectroscopy. Acc. Chem. Res. 50 (2017), 264–272, 10.1021/acs.accounts.6b00472.
Kang, J.W., Park, Y.S., Chang, H., Lee, W., Singh, S.P., Choi, W., Galindo, L.H., Dasari, R.R., Nam, S.H., Park, J., So, P.T.C., Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci. Adv., 6, 2020, 10.1126/sciadv.aay5206.
Anderson, R.R., Parrish, J.A., The optics of human skin. J. Invest. Dermatol. 77 (1981), 13–19, 10.1111/1523-1747.ep12479191.
Everall, N.J., Confocal Raman microscopy: why the depth resolution and spatial accuracy can be much worse than you think. Appl. Spectrosc. 54 (2000), 1515–1520, 10.1366/0003702001948439.
Everall, N.J., Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl. Spectrosc. 54 (2000), 773–782, 10.1366/0003702001950382.
Baldwin, K.J., Batchelder, D.N., Confocal Raman microspectroscopy through a planar interface. Appl. Spectrosc. 55 (2001), 517–524, 10.1366/0003702011952190.
Bruneel, J.L., Lassègues, J.C., Sourisseau, C., In-depth analyses by confocal Raman microspectrometry: experimental features and modeling of the refraction effects. J. Raman Spectrosc. 33 (2002), 815–828, 10.1002/jrs.915.
FDA, FY2015 Regulatory Science Research Report: Physiologically-Based Absorption and Pharmacokinetic Models., 2015.
Dancik, Y., Miller, M.A., Jaworska, J., Kasting, G.B., Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv. Drug Deliv. Rev. 65 (2013), 221–236, 10.1016/j.addr.2012.01.006.
Chen, L., Han, L., Saib, O., Lian, G., In silico prediction of percutaneous absorption and disposition kinetics of chemicals. Pharm. Res. 32 (2015), 1779–1793, 10.1007/s11095-014-1575-0.
Kattou, P., Lian, G., Glavin, S., Sorrell, I., Chen, T., Development of a two-dimensional model for predicting transdermal permeation with the follicular pathway: demonstration with a caffeine study. Pharm. Res. 34 (2017), 2036–2048, 10.1007/s11095-017-2209-0.
Smith, G., European medicines agency guideline on bioanalytical method validation: what more is there to say?. Bioanalysis 4 (2012), 865–868, 10.4155/bio.12.44.
Anissimov, Y.G., Watkinson, A., Modelling skin penetration using the laplace transform technique. Skin Pharmacol. Physiol. 26 (2013), 286–294, 10.1159/000351924.
Simon, L., Goyal, A., Dynamics and control of percutaneous drug absorption in the presence of epidermal turnover. J. Pharm. Sci. 98 (2009), 187–204, 10.1002/jps.21408.
Guy, R.H., Hadgraft, J., Percutaneous absorption kinetics of topically applied agents liable to surface loss. J. Soc. Cosmet. Chem. Japan. 35 (1984), 103–113.
Mccarley, K.D., Bunge, A.L., Pharmacokinetic models of dermal absorption. J. Pharm. Sci. 90 (2001), 1699–1719, 10.1002/jps.1120.
FDA, Regulatory Science Research Report. Narrow therapeutic index drugs. https://www.fda.gov/industry/generic-drug-user-fee-amendments/fy2015-regulatory-science-research-report-narrow-therapeutic-index-drugs, 2015.
Binder, L., Valenta, C., Lunter, D., Determination of skin penetration profiles by confocal Raman microspectroscopy: evaluation of interindividual variability and interlab comparability. J. Raman Spectrosc. 51 (2020), 1037–1043, 10.1002/jrs.5871.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.