Life sciences: Multidisciplinary, general & others
Author, co-author :
Kumari, Priyanka ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Bikram Pradhan
Maria Koromina
George P. Patrinos
Van Steen, Kristel ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Biostatistics, biomedicine and bioinformatics
Language :
English
Title :
Discovery of new drug indications for COVID- 19: A drug repurposing approach
Publication date :
2022
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Kim M, Kim YB. In silico synergistic drug repurposing for combating novel coronavirus (COVID-19) outbreaks. PLoS One. 2020;.
Garcia-Cremades M, Solans BP, Hughes E, Ernest JP, Wallender E, Aweeka F, et al. Optimizing hydroxychloroquine dosing for patients with COVID-19: An integrative modeling approach for effective drug repurposing. Clinical Pharmacology & Therapeutics. 2020;. https://doi.org/10.1002/cpt.1856 PMID: 32285930
Hodos RA, Kidd BA, Khader S, Readhead BP, Dudley JT. Computational approaches to drug repurposing and pharmacology. Wiley interdisciplinary reviews Systems biology and medicine. 2016; 8(3):186.
Calabrese LH, Calabrese C. Baricitinib and dexamethasone for hospitalized patients with COVID-19. Cleve Clin J Med. 2021;. https://doi.org/10.3949/ccjm.88a.ccc073 PMID: 33526440
Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. New England Journal of Medicine. 2021; 384(9):795–807. https://doi.org/10.1056/NEJMoa2031994 PMID: 33306283
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research. 2018; 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037 PMID: 29126136
Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: a suitable treatment? The Lancet Infectious Diseases. 2020; 20(9):1012–1013. https://doi.org/10.1016/S1473-3099(20)30262-0 PMID: 32251638
Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. The Journal of infection. 2020;. https://doi.org/10.1016/j.jinf.2020.04.017 PMID: 32333918
Stebbing J, Krishnan V, de Bono S, Ottaviani S, Casalini G, Richardson PJ, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO molecular medicine. 2020; 12(8):e12697. https://doi.org/10.15252/emmm.202012697 PMID: 32473600
Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Canè S, et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. The Journal of clinical investigation. 2020; 130(12). https://doi.org/10.1172/JCI141772 PMID: 32809969
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19. New England Journal of Medicine. 2020; 383(19):1813–1826. https://doi.org/10.1056/NEJMoa2007764 PMID: 32445440
Ferner RE, Aronson JK. Remdesivir in covid-19. British Medical Journal Publishing Group; 2020.
McCreary EK, Angus DC. Efficacy of Remdesivir in COVID-19. Jama. 2020; 324(11):1041–1042. https://doi.org/10.1001/jama.2020.16337 PMID: 32821934
Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Chakraborty C. Probable molecular mechanism of remdesivir for the treatment of COVID-19: need to know more. Archives of Medical research. 2020; 51(6):585–586. https://doi.org/10.1016/j.arcmed.2020.05.001 PMID: 32439198
Jiang Y, Chen D, Cai D, Yi Y, Jiang S. Effectiveness of remdesivir for the treatment of hospitalized COVID-19 persons: A network meta-analysis. Journal of medical virology. 2021; 93(2):1171–1174. https://doi.org/10.1002/jmv.26443 PMID: 32813283
Sharun K, Tiwari R, Dhama J, Dhama K. Dexamethasone to combat cytokine storm in COVID-19: Clinical trials and preliminary evidence. International journal of surgery (London, England). 2020;. https://doi.org/10.1016/j.ijsu.2020.08.038 PMID: 32896649
Johnson RM, Vinetz JM. Dexamethasone in the management of covid-19. British Medical Journal Publishing Group; 2020.
Levin JM, Oprea TI, Davidovich S, Clozel T, Overington JP, Vanhaelen Q, et al. Artificial intelligence, drug repurposing and peer review. Nature Biotechnology. 2020;p. 1–5. PMID: 32929264
Gysi DM, Valle ÍD, Zitnik M, Ameli A, Gan X, Varol O, et al. Network medicine framework for identifying drug repurposing opportunities for covid-19. arXiv preprint arXiv:200407229. 2020;.
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell discovery. 2020; 6(1):1–18.
Wang J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling. 2020;. https://doi.org/10.1021/acs.jcim.0c00179
Elmezayen AD, Al-Obaidi A, Şahin AT, Yelekçi K. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics. 2020;p. 1–13. https://doi.org/10.1080/07391102.2020.1758791 PMID: 32306862
Karatzas E, Zamora JE, Athanasiadis E, Dellis D, Cournia Z, Spyrou GM. ChemBioServer 2.0: an advanced web server for filtering, clustering and networking of chemical compounds facilitating both drug discovery and repurposing. Bioinformatics. 2020; 36(8):2602–2604. https://doi.org/10.1093/bioinformatics/btz976 PMID: 31913451
Taguchi Y, Turki T. A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction. PloS one. 2020; 15(9):e0238907. https://doi.org/10.1371/journal.pone.0238907 PMID: 32915876
Li X, Yu J, Zhang Z, Ren J, Peluffo AE, Zhang W, et al. Network bioinformatics analysis provides insight into drug repurposing for COVID-2019. Medicine in Drug Discovery. 2020;.
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic acids research. 2016; 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951 PMID: 26400175
Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, et al. DrugCentral: online drug compendium. Nucleic acids research. 2016;p. gkw993. https://doi.org/10.1093/nar/gkw993 PMID: 27789690
Chen L, Lu J, Luo X, Feng KY. Prediction of drug target groups based on chemical–chemical similarities and chemical–chemical/protein connections. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2014; 1844(1):207–213. https://doi.org/10.1016/j.bbapap.2013.05.021 PMID: 23732562
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017; 7:42717. https://doi.org/10.1038/srep42717 PMID: 28256516
Liang H, Chen L, Zhao X, Zhang X. Prediction of Drug Side Effects with a Refined Negative Sample Selection Strategy. Computational and Mathematical Methods in Medicine. 2020; 2020. https://doi.org/10.1155/2020/1573543 PMID: 32454877
Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic acids research. 2007; 36(suppl_1):D684–D688. https://doi.org/10.1093/nar/ gkm795 PMID: 18084021
Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, et al. STITCH 2: an interaction network database for small molecules and proteins. Nucleic acids research. 2010; 38 (suppl_1):D552–D556. https://doi.org/10.1093/nar/gkp937 PMID: 19897548
Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, Von Mering C, Jensen LJ, et al. STITCH 4: integration of protein–chemical interactions with user data. Nucleic acids research. 2014; 42(D1): D401–D407. https://doi.org/10.1093/nar/gkt1207 PMID: 24293645
Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic acids research. 2016; 44(D1):D380–D384. https://doi.org/10.1093/nar/gkv1277 PMID: 26590256
Chen L, Lu J, Huang T, Yin J, Wei L, Cai YD. Finding candidate drugs for hepatitis C based on chemical-chemical and chemical-protein interactions. PLoS One. 2014; 9(9):e107767. https://doi.org/10.1371/journal.pone.0107767 PMID: 25225900
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning research. 2011; 12:2825–2830.
Ramharack P, Soliman ME. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery. Journal of Biomolecular Structure and Dynamics. 2018; 36(5):1118–1133. https://doi.org/10.1080/07391102.2017.1313175 PMID: 28351337
Lin Z, Gehring R, Mochel J, Lave T, Riviere J. Mathematical modeling and simulation in animal health–Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. Journal of veterinary pharmacology and therapeutics. 2016; 39(5):421–438. https://doi.org/10.1111/jvp.12311 PMID: 27086878
Amin SA, Bhattacharya P, Basak S, Gayen S, Nandy A, Saha A. Pharmacoinformatics study of Piperolactam A from Piper betle root as new lead for non steroidal anti fertility drug development. Computational Biology and Chemistry. 2017; 67:213–224. https://doi.org/10.1016/j.compbiolchem.2017.01.004 PMID: 28160639
Ilieva Y, Kokanova-Nedialkova Z, Nedialkov P, Momekov G. In silico ADME and drug-likeness evaluation of a series of cytotoxic polyprenylated acylphloroglucinols, isolated from Hypericum annulatum Morris subsp. annulatum. Bulgarian Chemical Communications. 2018; 50:193–199.
Yaswanth M, et al. In–Silico design, synthesis, characterization and biological evaluation of novel 2-aze-tidinone derivatives for anti–Leukemic activity. Journal of PeerScientist. 2020; 2(1):e1000009.
da Silva Hage-Melim LI, Federico LB, de Oliveira NKS, Francisco VCC, Correa LC, de Lima HB, et al. Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Life Sciences. 2020;p. 117963. https://doi.org/10.1016/j.lfs.2020.117963
Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics and intelligent laboratory systems. 1987; 2(1-3):37–52. https://doi.org/10.1016/0169-7439(87)80084-9
Maaten Lvd, Hinton G. Visualizing data using t-SNE. Journal of machine learning research. 2008; 9 (Nov):2579–2605.
scikit-learn developers. sklearn.manifold. TSNE; 2020. Available from: https://scikit-learn.org/0.15/modules/generated/sklearn.manifold.TSNE.html.
Rokach L, Maimon O. Clustering methods. In: Data mining and knowledge discovery handbook. Springer; 2005. p. 321–352.
Ward JH Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical association. 1963; 58(301):236–244. https://doi.org/10.1080/01621459.1963.10500845
Abbas OA. Comparisons Between Data Clustering Algorithms. International Arab Journal of Information Technology (IAJIT). 2008; 5(3).
Ros F, Guillaume S. A hierarchical clustering algorithm and an improvement of the single linkage criterion to deal with noise. Expert Systems with Applications. 2019; 128:96–108. https://doi.org/10.1016/j.eswa.2019.03.031
Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS: ordering points to identify the clustering structure. ACM Sigmod record. 1999; 28(2):49–60. https://doi.org/10.1145/304181.304187
Amporndanai K, Meng X, Shang W, Jin Z, Rogers M, Zhao Y, et al. Inhibition mechanism of SARSCoV-2 main protease by ebselen and its derivatives. Nature communications. 2021; 12(1):1–7. https://doi.org/10.1038/s41467-021-23313-7 PMID: 34031399
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature Publishing Group; 2020.
Cui W, Yang K, Yang H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Frontiers in Molecular Biosciences, 7; 2020. https://doi.org/10.3389/fmolb.2020.616341 PMID: 33344509
Wenzel J, Lampe J, Müller-Fielitz H, Schuster R, Zille M, Müller K, et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience. 2021; 24(11):1522–1533. https://doi.org/10.1038/s41593-021-00926-1 PMID: 34675436
Choudhary MI, Shaikh M, tul Wahab A, ur Rahman A. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. Plos one. 2020; 15(7):e0235030. https://doi.org/10.1371/journal.pone.0235030 PMID: 32706783
Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARSCoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One. 2020; 15(10): e0240653. https://doi.org/10.1371/journal.pone.0240653 PMID: 33057452
Arlt W, Baldeweg SE, Pearce SH, Simpson HL. Clinical management guidance during the covid-19 pandemic adrenal insufficiency. Eur J Endocrinol. 2020;p. 1–21.
Zimniak M, Kirschner L, Hilpert H, Seibel J, Bodem J. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2. Biorxiv. 2020;.
Solinas C, Perra L, Aiello M, Migliori E, Petrosillo N. A critical evaluation of glucocorticoids in the treatment of severe COVID-19. Cytokine & growth factor reviews. 2020;.
Ramakrishnan S, Nicolau Jr DV, Langford B, Mahdi M, Jeffers H, Mwasuku C, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. The Lancet Respiratory Medicine. 2021;.
Agusti A, Torres F, Faner R. Early treatment with inhaled budesonide to prevent clinical deterioration in patients with COVID-19. The Lancet Respiratory Medicine. 2021;.
Miyazawa D, Kaneko G. Clinical trials of inhaled beclomethasone and mometasone for COVID-19 should be conducted. Journal of Medical Virology. 2020;. https://doi.org/10.1002/jmv.26413 PMID: 32776550
Sajid Jamal QM, Alharbi AH, Ahmad V. Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: a molecular docking and dynamics simulation studies. Journal of Biomolecular Structure and Dynamics. 2021;p. 1–15. https://doi.org/10.1080/07391102.2021.1905551 PMID: 33826483
Merzon E, Green I, Vinker S, Golan-Cohen A, Gorohovski A, Avramovich E, et al. The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID-19 infection. The FEBS Journal. 2021;. https://doi.org/10.1111/febs.15784 PMID: 33621437
Al-Motawa MS, Abbas H, Wijten P, de la Fuente A, Xue M, Rabbani N, et al. Vulnerabilities of the SARS-CoV-2 virus to proteotoxicity—opportunity for repurposed chemotherapy of COVID-19 infection. Frontiers in pharmacology. 2020; 11:1579. https://doi.org/10.3389/fphar.2020.585408 PMID: 33162891
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Research. 2021; 49(D1):D545–D551.