Antibacterials; Confocal microscopy; Guanidine; Membrane model simulation; Molecular simplification; Permeabilization assays; Propidium iodide; Urea; Anti-Bacterial Agents; Microbial Sensitivity Tests; Anti-Bacterial Agents/chemistry; Anti-Bacterial Agents/pharmacology; Urea/pharmacology; Pharmacology; Drug Discovery; Organic Chemistry; General Medicine
Abstract :
[en] The ever-faster rise of antimicrobial resistance (AMR) represents a major global Public Health challenge. New chemical entities with innovative Modes of Action (MoAs) are thus desirable. We recently reported the development of a novel class of broad-spectrum bactericidal agents, the AlkylGuanidino Ureas (AGU). Due to their polycationic structure, they likely target bacterial membranes. In order to better understand their MoA, we synthesized a library of AGU derivatives by structural simplification of selected hit compounds and developed specific assays based on membrane models by means of both analytical and computational techniques. Cell-based assays provided experimental evidence that AGUs disrupt bacterial membranes without showing hemolytic behavior. Hence, we herein report a thorough chemical and biological characterization of a new series of AGUs obtained through molecular simplification, allowing the rational design of potent antibacterial compounds active on antibiotic-resistant strains.
Disciplines :
Microbiology Life sciences: Multidisciplinary, general & others Immunology & infectious disease
Author, co-author :
D'Agostino, Ilaria ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy. Electronic address: ilaria.dagostino91@gmail.com
Ardino, Claudia; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy
Poli, Giulio; Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
Sannio, Filomena ; Dipartimento di Biotecnologie Mediche, University of Siena, I-53100, Siena, Italy
Lucidi, Massimiliano ; Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Roma, Italy
Poggialini, Federica ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy
Visaggio, Daniela ; Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Roma, Italy, Fondazione Santa Lucia IRCCS, Roma, Italy
Rango, Enrico ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy
Filippi, Silvia ; Department of Ecological and Biological Sciences, University of Tuscia, Largo Università s.n.c., I-01100, Viterbo, Italy
Petricci, Elena; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy
Visca, Paolo ; Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Roma, Italy, Fondazione Santa Lucia IRCCS, Roma, Italy
Botta, Lorenzo; Department of Ecological and Biological Sciences, University of Tuscia, Largo Università s.n.c., I-01100, Viterbo, Italy, Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, I-53019, Castelnuovo Berardenga, Italy
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Dreassi, Elena ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy. Electronic address: elena.dreassi@unisi.it
CDC. Antibiotic Resistance Threats in the United States, 2019., 2019, U.S. Department of Health and Human Services, CDC, Atlanta, GA, 10.15620/cdc:82532.
Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M., Ouakrim, D.A., Oliveira, T.C., Struelens, M.J., Suetens, C., Monnet, D.L., Strauss, R., Mertens, K., Struyf, T., Catry, B., Latour, K., Ivanov, I.N., Dobreva, E.G., Tambic Andraševic, A., Soprek, S., Budimir, A., Paphitou, N., Žemlicková, H., Schytte Olsen, S., Wolff Sönksen, U., Märtin, P., Ivanova, M., Lyytikäinen, O., Jalava, J., Coignard, B., Eckmanns, T., Abu Sin, M., Haller, S., Daikos, G.L., Gikas, A., Tsiodras, S., Kontopidou, F., Tóth, Á., Hajdu, Á., Guólaugsson, Ó., Kristinsson, K.G., Murchan, S., Burns, K., Pezzotti, P., Gagliotti, C., Dumpis, U., Liuimiene, A., Perrin, M., Borg, M.A., de Greeff, S.C., Monen, J.C., Koek, M.B., Elstrøm, P., Zabicka, D., Deptula, A., Hryniewicz, W., Caniça, M., Nogueira, P.J., Fernandes, P.A., Manageiro, V., Popescu, G.A., Serban, R.I., Schréterová, E., Litvová, S., Štefkovicová, M., Kolman, J., Klavs, I., Korošec, A., Aracil, B., Asensio, A., Pérez-Vázquez, M., Billström, H., Larsson, S., Reilly, J.S., Johnson, A., Hopkins, S., Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19 (2019), 56–66, 10.1016/S1473-3099(18)30605-4.
O'Neill, J., Antimicrobial Resistance: tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist., 2014, 1–16, 10.1038/510015a.
O'Neill, J., Tackling Drug-Resistant Infections Globally: Final Report and Recommendations the Review on Antimicrobial Resistance., 2016, Rev. Antimicrob. Resist. https://amr-review.org/sites/default/files/160518_Final paper_with cover.pdf. (Accessed 28 November 2018)
Antibiotics - the Pew Charitable Trusts. https://www.pewtrusts.org/ja/topics/antibiotics (accessed May 19, 2021).
FDA Approves New Antibacterial Drug to Treat Complicated Urinary Tract Infections as Part of Ongoing Efforts to Address Antimicrobial Resistance. https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-complicated-urinary-tract-infections-part-ongoing-efforts (accessed October 22, 2021).
Veve, M.P., Wagner, J.L., Lefamulin: review of a promising novel pleuromutilin antibiotic. Pharmacotherapy 38 (2018), 935–946, 10.1002/phar.2166.
FDA Approves New Antibiotic to Treat Community-Acquired Bacterial Pneumonia. https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibiotic-treat-community-acquired-bacterial-pneumonia (accessed May 19, 2021).
Antibacterial Agents in Clinical Development: an Analysis of the Antibacterial Clinical Development Pipeline, 2019 https://www.who.int/publications/i/item/9789240000193. (Accessed 19 May 2021)
Access to Medicine Foundation. Antimicrobial Resistance Benchmark. 2020 www.amrbenchmark.org. (Accessed 19 May 2021)
Antimicrobial Resistance Division, G.C. and Partnership. Antibacterial Agents in Clinical and Preclinical Development. 2020 https://www.who.int/publications/i/item/9789240021303. (Accessed 5 May 2021)
Tracking the Global Pipeline of Antibiotics in Development - the Pew Charitable Trusts. https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2021/03/tracking-the-global-pipeline-of-antibiotics-in-development (accessed May 25, 2021).
Maccari, G., Sanfilippo, S., De Luca, F., Deodato, D., Casian, A., Dasso Lang, M.C., Zamperini, C., Dreassi, E., Rossolini, G.M., Docquier, J.-D.D., Botta, M., Synthesis of linear and cyclic guazatine derivatives endowed with antibacterial activity. Bioorg. Med. Chem. Lett 24 (2014), 5525–5529, 10.1016/j.bmcl.2014.09.081.
Zamperini, C., Maccari, G., Deodato, D., Pasero, C., D'Agostino, I., Orofino, F., De Luca, F., Dreassi, E., Docquier, J.D., Botta, M., Identification, synthesis and biological activity of alkyl- guanidine oligomers as potent antibacterial agents. Sci. Rep. 7 (2017), 1–11, 10.1038/s41598-017-08749-6.
Botta, M., Maccari, G., Sanfilippo, S., De Luca, F., Docquier, J.D., Deodato, D., Linear Guanidine Derivatives, Methods of Preparation and Uses thereof., WO/2016/055644. 2015 https://patentscope2.wipo.int/search/de/detail.jsf?docId=WO2016055644&redirectedID=true.
Pasero∗, C., D'Agostino∗, I., De Luca, F., Zamperini, C., Deodato, D., Truglio, G.I., Sannio, F., Del Prete, R., Ferraro, T., Visaggio, D., Mancini, A., Guglielmi, M.B., Visca, P., Docquier, J.-D.D., Botta, M., Pasero∗, C., D'Agostino∗, I., De Luca, F., Zamperini, C., Deodato, D., Truglio, G.I., Sannio, F., Del Prete, R., Ferraro, T., Visaggio, D., Mancini, A., Guglielmi, M.B., Visca, P., Docquier, J.-D.D., Botta, M., Alkyl-guanidine compounds as potent broad-spectrum antibacterial agents: chemical library extension and biological characterization. acs.jmedchem.8b00619 J. Med. Chem., 61, 2018, 10.1021/acs.jmedchem.8b00619.
Hernandez, A., Grooms, G., El-Alfy, A., Stec, J., Convenient one-pot two-step synthesis of symmetrical and unsymmetrical diacyl ureas, acyl urea/carbamate/thiocarbamate derivatives, and related compounds, synthesis (stuttg)., 49, 2017, 2163–2176, 10.1055/s-0036-1588724.
Ashworth, I.W., Cox, B.G., Meyrick, B., Kinetics and mechanism of N -boc cleavage: evidence of a second-order dependence upon acid concentration. J. Org. Chem. 75 (2010), 8117–8125, 10.1021/jo101767h.
Wang, S., Dong, G., Sheng, C., Structural simplification: an efficient strategy in lead optimization. Acta Pharm. Sin. B. 9 (2019), 880–901, 10.1016/j.apsb.2019.05.004.
Katritzky, A.R., Pleynet, D.P.M., Yang, B., A general synthesis of unsymmetrical tetrasubstituted ureas. J. Org. Chem. 62 (1997), 4155–4158, 10.1021/jo962245t.
Ghosh, A.K., Brindisi, M., Urea derivatives in modern drug discovery and medicinal chemistry. J. Med. Chem. 63 (2020), 2751–2788, 10.1021/acs.jmedchem.9b01541.
Bryantsev, V.S., Firman, T.K., Hay, B.P., Conformational analysis and rotational barriers of alkyl- and phenyl-substituted urea derivatives. J. Phys. Chem. A 109 (2005), 832–842, 10.1021/jp0457287.
Matsumura, M., Tanatani, A., Azumaya, I., Masu, H., Hashizume, D., Kagechika, H., Muranaka, A., Uchiyama, M., Unusual conformational preference of an aromatic secondary urea: solvent-dependent open-closed conformational switching of N,N′-bis(porphyrinyl)urea. Chem. Commun. 49 (2013), 2290–2292, 10.1039/c2cc37583d.
Andreev, K., Bianchi, C., Laursen, J.S., Citterio, L., Hein-Kristensen, L., Gram, L., Kuzmenko, I., Olsen, C.A., Gidalevitz, D., Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes. Biochim. Biophys. Acta Biomembr. 1838 (2014), 2492–2502, 10.1016/j.bbamem.2014.05.022.
Crowley, P.B., Golovin, A., Cation-π interactions in protein-protein interfaces. Proteins 59 (2005), 231–239, 10.1002/prot.20417.
Selig, P., Guanidines as Reagents and Catalysts II. 2017, Springer International Publishing, Cham, 10.1007/978-3-319-53013-0.
Woods, A.S., Ferré, S., Amazing stability of the arginine-phosphate electrostatic interaction. J. Proteome Res. 4 (2005), 1397–1402, 10.1021/pr050077s.
Mogaki, R., Hashim, P.K., Okuro, K., Aida, T., Guanidinium-based “molecular glues” for modulation of biomolecular functions. Chem. Soc. Rev. 46 (2017), 6480–6491, 10.1039/c7cs00647k.
Manetti, F., Castagnolo, D., Raffi, F., Zizzari, A.T., Rajamäki, S., D'Arezzo, S., Visca, P., Cona, A., Fracasso, M.E., Doria, D., Posteraro, B., Sanguinetti, M., Fadda, G., Botta, M., Synthesis of new linear guanidines and macrocyclic amidinourea derivatives endowed with high antifungal activity against Candida spp. and Aspergillus spp. J. Med. Chem. 52 (2009), 7376–7379, 10.1021/jm900760k.
Thomson, A., O'Connor, S., Knuckley, B., Causey, C.P., Design, synthesis, and in vitro evaluation of an activity-based protein profiling (ABPP) probe targeting agmatine deiminases. Bioorg. Med. Chem. 22 (2014), 4602–4608, 10.1016/j.bmc.2014.07.028.
Kan, T., Fukuyama, T., Ns strategies: a highly versatile synthetic method for amines. Chem. Commun. 4 (2004), 353–359, 10.1039/b311203a.
Sohlenkamp, C., Geiger, O., Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev. 40 (2015), 133–159, 10.1093/femsre/fuv008.
Lin, T.Y., Weibel, D.B., Organization and function of anionic phospholipids in bacteria. Appl. Microbiol. Biotechnol. 100 (2016), 4255–4267, 10.1007/s00253-016-7468-x.
Epand, R.M., Epand, R.F., Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta Biomembr. 1788 (2009), 289–294, 10.1016/j.bbamem.2008.08.023.
Knobloch, J., Suhendro, D.K., Zieleniecki, J.L., Shapter, J.G., Köper, I., Membrane-drug interactions studied using model membrane systems. Saudi J. Biol. Sci. 22 (2015), 714–718, 10.1016/j.sjbs.2015.03.007.
Deleu, M., Crowet, J.M., Nasir, M.N., Lins, L., Complementary Biophysical Tools to Investigate Lipid Specificity in the Interaction between Bioactive Molecules and the Plasma Membrane: A Review. 2014, Elsevier B.V., 10.1016/j.bbamem.2014.08.023.
Hollmann, A., Martinez, M., Maturana, P., Semorile, L.C., Maffia, P.C., Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front. Chem. 6 (2018), 1–13, 10.3389/fchem.2018.00204.
Hu, X., Tam, K., Biomembrane mimics and their roles in anti-bacterial drug discovery. ADMET DMPK 5 (2017), 9–13, 10.5599/admet.5.1.375.
Savini, F., Bobone, S., Roversi, D., Mangoni, M.L., Stella, L., From liposomes to cells: filling the gap between physicochemical and microbiological studies of the activity and selectivity of host-defense peptides. Pept. Sci., 110, 2020, e24041, 10.1002/pep2.24041.
Moyano, F., Molina, P.G., Silber, J.J., Sereno, L., Correa, N.M., An alternative approach to quantify partition processes in confined environments: the electrochemical behavior of PRODAN in unilamellar vesicles. ChemPhysChem 11 (2010), 236–244, 10.1002/cphc.200900557.
Andrushchenko, V.V., Aarabi, M.H., Nguyen, L.T., Prenner, E.J., Vogel, H.J., Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochim. Biophys. Acta Biomembr. 1778 (2008), 1004–1014, 10.1016/j.bbamem.2007.12.022.
Pérez-Peinado, C., Dias, S.A., Domingues, M.M., Benfield, A.H., Freire, J.M., Rádis-Baptista, G., Gaspar, D., Castanho, M.A.R.B., Craik, D.J., Henriques, S.T., Veiga, A.S., Andreu, D., Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 293 (2018), 1536–1549, 10.1074/jbc.RA117.000125.
Grau-Campistany, A., Manresa, Á., Pujol, M., Rabanal, F., Cajal, Y., Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria. Biochim. Biophys. Acta Biomembr. 1858 (2016), 333–343, 10.1016/j.bbamem.2015.11.011.
Pereira, F., Figueiredo, T., de Almeida, R.F.M., Antunes, C.A.C., Garcia, C., Reis, C.P., Ascensão, L., Sobral, R.G., Rijo, P., Unveiling the mechanism of action of 7α-acetoxy-6β-hydroxyroyleanone on an mrsa/visa strain: membrane and cell wall interactions. Biomolecules 10 (2020), 1–17, 10.3390/biom10070983.
Sakai, N., Matile, S., Anion-mediated transfer of polyarginine across liquid and bilayer membranes. J. Am. Chem. Soc. 125 (2003), 14348–14356, 10.1021/ja037601l.
Greenspan, P., Fowler, S.D., Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 26 (1985), 781–789, 10.1016/s0022-2275(20)34307-8.
Petrović, S., Tačić, A., Savić, S., Nikolić, V., Nikolić, L., Savić, S., Sulfanilamide in solution and liposome vesicles; in vitro release and UV-stability studies. Saudi Pharmaceut. J. 25 (2017), 1194–1200, 10.1016/j.jsps.2017.09.003.
Antol, I., Glasovac, Z., Margetić, D., Crespo-Otero, R., Barbatti, M., Insights on the auxochromic properties of the guanidinium group. J. Phys. Chem. A 120 (2016), 7088–7100, 10.1021/acs.jpca.6b05180.
Berben, P., Bauer-Brandl, A., Brandl, M., Faller, B., Flaten, G.E., Jacobsen, A.C., Brouwers, J., Augustijns, P., Drug permeability profiling using cell-free permeation tools: overview and applications. Eur. J. Pharmaceut. Sci. 119 (2018), 219–233, 10.1016/j.ejps.2018.04.016.
Orofino, F., Truglio, G.I.G.I., Fiorucci, D., D'Agostino, I., Borgini, M., Poggialini, F., Zamperini, C., Dreassi, E., Maccari, L., Torelli, R., Martini, C., Bernabei, M., Meis, J.F.J.F., Khandelwal, N.K.N.K., Prasad, R., Sanguinetti, M., Bugli, F., Botta, M., In vitro characterization, ADME analysis, and histological and toxicological evaluation of BM1, a macrocyclic amidinourea active against azole-resistant Candida strains. Int. J. Antimicrob. Agents, 55, 2020, 105865, 10.1016/j.ijantimicag.2019.105865.
Wohnsland, F., Faller, B., High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J. Med. Chem. 44 (2001), 923–930, 10.1021/jm001020e.
Décout, J., Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. Medchemcomm 7 (2016), 586–611, 10.1039/C5MD00503E.
Masungi, C., Mensch, J., Van Dijck, A., Borremans, C., Willems, B., Mackie, C., Noppe, M., Brewster, M.E., Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates. Pharmazie 63 (2008), 194–199, 10.1691/ph.2008.7327.
Nielsen, P.E., Avdeef, A., PAMPA - a drug absorption in vitro model: 8. Apparent filter porosity and the unstirred water layer. Eur. J. Pharmaceut. Sci. 22 (2004), 33–41, 10.1016/j.ejps.2004.02.003.
He, S., Zhiti, A., Barba-Bon, A., Hennig, A., Nau, W.M., Real-time parallel artificial membrane permeability assay based on supramolecular fluorescent artificial receptors. Front. Chem., 8, 2020, 597927, 10.3389/fchem.2020.597927.
Balimane, P.V., Pace, E., Chong, S., Zhu, M., Jemal, M., Van Pelt, C.K., A novel high-throughput automated chip-based nanoelectrospray tandem mass spectrometric method for PAMPA sample analysis. J. Pharm. Biomed. Anal. 39 (2005), 8–16, 10.1016/j.jpba.2005.03.043.
Sugano, K., Hamada, H., Machida, M., Ushio, H., Saitoh, K., Terada, K., Optimized conditions of bio-mimetic artificial membrane permeation assay. Int. J. Pharm. 228 (2001), 181–188, 10.1016/S0378-5173(01)00845-6.
Khondker, A., Dhaliwal, A., Alsop, R.J., Tang, J., Backholm, M., Shi, A.C., Rheinstädter, M.C., Partitioning of caffeine in lipid bilayers reduces membrane fluidity and increases membrane thickness. Phys. Chem. Chem. Phys. 19 (2017), 7101–7111, 10.1039/c6cp08104e.
Waters, M.L., Aromatic interactions in peptides: impact on structure and function. Biopolym. - Pept. Sci. Sect. 76 (2004), 435–445, 10.1002/bip.20144.
Blanco, F., Kelly, B., Alkorta, I., Rozas, I., Elguero, J., Cation–π interactions: complexes of guanidinium and simple aromatic systems. Chem. Phys. Lett. 511 (2011), 129–134, 10.1016/j.cplett.2011.06.012.
Li, Y., Liu, J., Gumbart, J.C., Preparing membrane proteins for simulation using CHARMM-GUI. Methods Mol. Biol., 2021, Humana Press Inc., 237–251, 10.1007/978-1-0716-1394-8_13.
Bankier, C., Cheong, Y., Mahalingam, S., Edirisinghe, M., Ren, G., Cloutman-Green, E., Ciric, L., A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS One, 13, 2018, e0192093, 10.1371/JOURNAL.PONE.0192093.
Benfield, A.H., Henriques, S.T., Mode-of-Action of antimicrobial peptides: membrane disruption vs. Intracellular mechanisms. Front. Med. Technol. 2 (2020), 25–28, 10.3389/fmedt.2020.610997.
Lagorce, D., Bouslama, L., Becot, J., Miteva, M.A., Villoutreix, B.O., FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 33 (2017), 3658–3660, 10.1093/bioinformatics/btx491.
Baell, J.B., Holloway, G.A., New substructure filters for removal of Pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53 (2010), 2719–2740, 10.1021/jm901137j.
FAFDrugs4. https://fafdrugs4.rpbs.univ-paris-diderot.fr/ (accessed May 26, 2021).
Patel, J.B., Eliopoulos, G.M., Jenkins, S.G., James Lewis, F.S. II, Brandi Limbago, P., Nicolau, D.P., Robin Patel, F., Powell, M., Sandra Richter, Frcp.S., Jana Swenson, D.M., Maria Traczewski, Mms.M., John Turnidge, M.D., Weinstein, M.P., Zimmer, B.L., April Bobenchik, D.M., Shelley Campeau, D., Sharon Cullen, D.K., Marcelo Galas Howard Gold, R.F., Romney Humphries, F.M., Thomas Kirn, D.J., Lewis, J.S. II, Brandi Limbago, F., Mathers, A.J., Tony Mazzulli, D., Sandra Richter, F.S., Michael Satlin, F., Audrey Schuetz, M.N., Pranita Tamma, Mms.D., Performance Standards for Antimicrobial Susceptibility Testing Performance Standards for Antimicrobial Susceptibility Testing Suggested Citation. 2016, 100–125.
Case, D.A., Aktulga, H.M., Belfon, K., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Cheatham, T.E. III, Cisneros, G.A., Cruzeiro, V.W.D., Darden, T.A., Duke, R.E., Giambasu, G., Gilson, M.K., Gohlke, H., Goetz, A.W., Harris, R., Izadi, S., Izmailov, S.A., Jin, C., Kasavajhala, K., Kaymak, M.C., King, E., Kovalenko, A., Kurtzman, T., Lee, T.S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Machado, M., Man, V., Manathunga, M., Merz, K.M., Miao, Y., Mikhailovskii, O., Monard, G., Nguyen, H., O'Hearn, K.A., Onufriev, A., Pan, F., Pantano, S., Qi, R., Rahnamoun, A., Roe, D.R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C.L., Skrynnikov, N.R., Smith, J., Swails, J., Walker, R.C., Wang, J., Wei, H., Wolf, R.M., Wu, X., Xue, Y., York, D.M., Zhao, S., Kollman, P.A., Amber 2021. 2021, University of California, San Francisco.
Skjevik, Å.A., Madej, B.D., Dickson, C.J., Lin, C., Teigen, K., Walker, R.C., Gould, I.R., Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Phys. Chem. Chem. Phys. 18 (2016), 10573–10584, 10.1039/c5cp07379k.
De Logu, F., Li Puma, S., Landini, L., Tuccinardi, T., Poli, G., Preti, D., De Siena, G., Patacchini, R., Tsagareli, M.G., Geppetti, P., Nassini, R., The acyl-glucuronide metabolite of ibuprofen has analgesic and anti-inflammatory effects via the TRPA1 channel. Pharmacol. Res. 142 (2019), 127–139, 10.1016/j.phrs.2019.02.019.
Bizzarri, B.M., Botta, L., Aversa, D., Mercuri, N.B., Poli, G., Barbieri, A., Berretta, N., Saladino, R., L-DOPA-quinone mediated recovery from GIRK channel firing inhibition in dopaminergic neurons. ACS Med. Chem. Lett. 10 (2019), 431–436, 10.1021/acsmedchemlett.8b00477.
Jin, Y., Hammer, J., Pate, M., Zhang, Y., Zhu, F., Zmuda, E., Blazyk, J., Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrob. Agents Chemother. 49 (2005), 4957–4964, 10.1128/AAC.49.12.4957-4964.2005.