SARS-CoV-2; adenovirus; blue LED light; respiratory syncytial virus; viral inactivation; Immunology and Allergy; Molecular Biology; Immunology and Microbiology (all); Microbiology (medical); Infectious Diseases; General Immunology and Microbiology
Abstract :
[en] Blue LED light has proven to have a powerful bacteria-killing ability; however, little is known about its mechanism of virucidal activity. Therefore, we analyzed the effect of blue light on different respiratory viruses, such as adenovirus, respiratory syncytial virus and SARS-CoV-2. The exposure of samples to a blue LED light with a wavelength of 420 nm (i.e., in the visible range) at 20 mW/cm2 of irradiance for 15 min appeared optimal and resulted in the complete inactivation of the viral load. These results were similar for all the three viruses, demonstrating that both enveloped and naked viruses could be efficiently inactivated with blue LED light, regardless of the presence of envelope and of the viral genome nature (DNA or RNA). Moreover, we provided some explanations to the mechanisms by which the blue LED light could exert its antiviral activity. The development of such safe and low-cost light-based devices appears to be of fundamental utility for limiting viral spread and for sanitizing small environments, objects and surfaces, especially in the pandemic era.
Disciplines :
Microbiology Immunology & infectious disease
Author, co-author :
Terrosi, Chiara; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
Anichini, Gabriele ; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines (CIP)
Gori Savellini, Gianni ; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
Gandolfo, Claudia ; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
Pavone, Francesco Saverio; Department of Physics and Astronomy, European Laboratory for Non Linear Spectroscopy (LENS), University of Florence, 50121 Florence, Italy
Cusi, Maria Grazia ; Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
Language :
English
Title :
Efficient Inactivation of SARS-CoV-2 and Other RNA or DNA Viruses with Blue LED Light.
Wang, Y.; Wang, Y.; Wang, Y.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; Dai, T. Antimicrobial blue light inactivation of pathogenic microbes: State of the art. Drug Resist. Updates 2017, 33–35, 1–22. [CrossRef] [PubMed]
Tomb, R.M.; White, T.A.; Coia, J.E.; Anderson, J.G.; MacGregor, S.J.; Maclean, M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380–480 nm Violet-Blue Light. J. Photochem. Photobiol. B Biol. 2018, 94, 445–458. [CrossRef] [PubMed]
Zhou, W.; Kumer, A.; Ghate, V.; Kim, M.J.; Zhou, W.; Khoo, G.H.; Yuk, H.G. Antibacterial efficacy of 405, 460 and 520 nm light emitting diodes on Lactobacillus plantarum, Staphylococcus aureus and Vibrio parahaemolyticus. J. Appl. Microbiol. 2016, 120, 49–56. [CrossRef]
Masson-Meyers, D.S.; Bumah, V.V.; Biener, G.; Raicu, V.; Enwemeka, C.S. The relative antimicrobial effect of blue 405 nm LED and blue 405 nm laser on methicillin-resistant Staphylococcus aureus in vitro. Lasers Med. Sci. 2005, 30, 2265–2272. [CrossRef]
Enwemeka, C.S. Antimicrobial blue light: An emerging alternative to antibiotics. Photomed. Laser Surg. 2013, 31, 509–511. [CrossRef] [PubMed]
Bumah, V.V.; Masson-Meyers, D.S.; Enwemeka, C.S. Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Med. Surg. 2015, 47, 595–601. [CrossRef]
Dai, T.; Gupta, A.; Murray, C.K.; Vrahas, M.S.; Tegos, G.P.; Hamblin, M.R. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist. Updates 2012, 15, 15223–15236. [CrossRef] [PubMed]
De Sous, N.T.A.; Santos, M.F.; Gomes, R.C.; Brandino, H.E.; Martinez, R.; de Jesus Guirro, R.R. Blue laser inhibits bacterial growth of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa. Photomed. Laser Surg. 2015, 33, 278–282. [CrossRef] [PubMed]
McKenzie, K.; Maclean, M.; Timoshkin, I.V.; MacGregor, S.J.; Anderson, J.G. Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int. J. Food Microbiol. 2013, 170, 91–98. [CrossRef] [PubMed]
Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G.A. The role of oxygen in the visible light inactivation and wavelength sensitivity of Staphylococcus aureus. J. Photochem. Photobiol. B 2008, 92, 180–184. [CrossRef] [PubMed]
Enwemeka, C.S.; Williams, D.; Hollosi, D.; Yens, S.; Waynant, R.; Tata, D.B. Blue Light Photo-Destroys Methicillin Resistant Staphylococcus aureus (MRSA) In Vitro; Springer: Boston, MA, USA, 2008; pp. 33–37.
Guffey, J.S.; Wilborn, J. In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed. Laser Surg. 2006, 24, 684–688. [CrossRef]
Murdoch, L.E.; McKenzie, K.; Maclean, M.; MacGregor, S.J.; Anderson, J.G. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biol. 2013, 117, 19–527. [CrossRef] [PubMed]
Cieplik, F.; Spath, A.; Leibl, C.; Gollmer, A.; Regensburge, J.; Tabenski, L.; Hiller, K.A.; Maisch, T.; Schmalz, G. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin. Oral Investig. 2014, 18, 1763–1769. [CrossRef]
Bumah, V.V.; Aboualizadeh, E.; Masson-Meyers, D.; Eells, J.; Enwemeka, C.S.; Hirschmugl, C. Resistance of B-DNA to blue light induced damage in methicillin-resistant Staphylococcus aureus. J. Photochem. Photobiol. B Biol. 2017, 167, 150–157. [CrossRef]
Pang, P.; Wang, N.; Wang, C.; Yao, Y.; Fu, X.; Yu, W.; Cai, R.; Yao, M. 460 nm visible light irradiation eradicates MRSA via inducing prophage activation. J. Photochem. Photobiol. B Biol. 2017, 166, 311–322. [CrossRef]
Tomb, R.M.; Maclean, M.; Herron, P.R.; Hoskisson, P.A.; MacGregor, S.J.; Anderson, J.G. Inactivation of Streptomyces phage /C31 by 405 nm light: Requirement for exogenous photosensitizers? Bacteriophage 2014, 4, e32129. [CrossRef] [PubMed]
Richardson, T.B.; Porter, C.D. Inactivation of murine leukaemia virus by exposure to visible light. Virology 2005, 341, 321–329. [CrossRef] [PubMed]
Tomb, R.M.; Maclean, M.; Coia, J.E.; Graham, E.; McDonald, M.; Atreya, C.D.; MacGregor, S.J.; Anderson, J.G. New Proof-of-Concept in Viral Inactivation: Virucidal Efficacy of 405 nm Light Against Feline Calicivirus as a Model for Norovirus Decontamination. Food Environ. Virol. 2017, 9, 159–167. [CrossRef] [PubMed]
Lynch, J.P.; Fishbein, M.; Echavarria, M. Adenovirus. Semin. Respir. Crit. Care Med. 2011, 32, 494–511. [CrossRef] [PubMed]
Griffiths, C.; Drews, S.J.; Marchant, D.J. Respiratory Syncytial Virus: Infection, Detection, and New Options for Prevention and Treatment. Clin. Microbiol. Rev. 2017, 30, 277–319. [CrossRef]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [CrossRef]
Ramakrishnan, P.; Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Grant, M.H. Cytotoxic responses to 405nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species. Toxicol. In Vitro 2016, 33, 54–62. [CrossRef]
Kuse, Y.; Ogawa, K.; Tsuruma, K.; Shimazawa, M.; Hara, H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci. Rep. 2014, 4, 5223. [CrossRef]
Bumah, V.V.; Morrow, B.N.; Cortez, P.M.; Bowman, C.R.; Rojas, P.; Masson-Meyers, D.S.; Suprapto, J.; Tong, W.G.; Enwemeka, C.S. The importance of porphyrins in blue light suppression of Streptococcus agalactiae. J. Photochem. Photobiol. B Biol. 2020, 212, 111996. [CrossRef] [PubMed]
Williams, O.W.; Sharafkhaneh, A.; Kim, V.; Dickey, B.F.; Evans, C.M. Airway mucus: From production to secretion. Am. J. Respir. Cell Mol. Biol. 2006, 34, 527–536. [CrossRef] [PubMed]
Niazi, S.; Groth, R.; Spann, K.; Johnson, G.R. The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review. Environ. Pollut. 2021, 276, 115767. [CrossRef] [PubMed]
Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497.