Buniello, A, MacArthur, JA, Cerezo, M, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 2019;47(D1):D1005-12.
Gordon, H, Trier Moller, F, Andersen, V, et al. Heritability in inflammatory bowel disease: from the first twin study to genomewide association studies. Inflamm Bowel Dis 2015;21(6):1428-34.
Ellinghaus, D, Jostins, L, Spain, SL, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016;48(5):510.
Shaw, KA, Cutler, DJ, Okou, D, et al. Genetic variants and pathways implicated in a pediatric inflammatory bowel disease cohort. Genes Immun 2019;20(2):131-42.
Manolio, TA, Collins, FS, Cox, NJ, et al. Finding the missing heritability of complex diseases. Nature 2009;461(7265):747-53.
Lin, Z, Wang, Z, Hegarty, JP, et al. Genetic association and epistatic interaction of the interleukin-10 signaling pathway in pediatric inflammatory bowel disease. World J Gastroenterol 2017;23(27):4897.
Pedros, C, Gaud, G, Bernard, I, et al. An epistatic interaction between Themis1 and Vav1 modulates regulatory T cell function and inflammatory bowel disease development. J Immunol 2015;195(4):1608-16.
Zhang, J, Wei, Z, Cardinale, CJ, et al. Multiple epistasis interactions within MHC are associated with ulcerative colitis. Front Genet 2019;10:257.
Vermeire, S, Rutgeerts, P, Van Steen, K, et al. Genome wide scan in a Flemish inflammatory bowel disease population: support for the IBD4 locus, population heterogeneity, and epistasis. Gut 2004;53(7):980-6.
McGovern, DP, Rotter, JI, Mei, L, et al. Genetic epistasis of IL23/IL17 pathway genes in Crohn's disease Dermot. Inflamm Bowel Dis 2009;15(6):883-9.
Glas, J, Stallhofer, J, Ripke, S, et al. Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am J Gastroenterol 2009;104(7):1737.
Moore, JH, Williams, SM. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 2005;27(6):637-46.
Wu, X, Dong, H, Luo, L, et al. A novel statistic for genome-wide interaction analysis. PLoS Genet 2010;6(9):e1001131.
Lehne, B, Lewis, CM, Schlitt, T. From SNPs to genes: disease association at the gene level. PLoS One 2011;6(6):e20133.
Jorgenson, E, Witte, JS. A gene-centric approach to genome-wide association studies. Nat Rev Genet 2006;7:885-91.
Niel, C, Sinoquet, C, Dina, C, et al. A survey about methods dedicated to epistasis detection. Front Genet 2015;6:doi:10.3389/fgene.2015.00285.
Gumpinger, AC, Rieck, B, Grimm, DG, et al. Network-guided search for genetic heterogeneity between gene pairs. Bioinformatics 2021;37(1):57-65.
Pendergrass, SA, Frase, A, Wallace, J, et al. Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development. Biodata Min 2013;6(1):25.
Sheng, X, Yang, J. An adaptive truncated product method for combining dependent p-values. Econ Lett 2013;119(2): 180-2.
Cortes, A, Brown, MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther 2010;13(1):101.
Ellinghaus, D, Spain, SL, Cortes, A, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016;48(5):510-8.
Purcell, S, Neale, B, Todd-Brown, K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81(3):559-75.
Piñero, J, Ramírez-Anguita, JM, Saüch-Pitarch, J, et al. The Dis-GeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020;48(D1):D845-55.
de los Campos, G, Sorensen, DA, Toro, MA. Imperfect linkage disequilibrium generates phantom epistasis (& perils of big data). G3 (Bethesda) 2019;9(5):1429-36.
Lin, Z, Hegarty, JP, John, G, et al. NOD2 mutations affect muramyl dipeptide stimulation of human B lymphocytes and interact with other IBD-associated genes. Dig Dis Sci 2013;58(9):2599-607.
Beckly, JB, Hancock, L, Geremia, A, et al. Two-stage candidate gene study of chromosome 3p demonstrates an association between nonsynonymous variants in the MST1R gene and Crohn's disease. Inflamm Bowel Dis 2008;14(4):500-7.
Burton, PR, Clayton, DG, Cardon, LR, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447(7145):661-78.
Wu, WKK, Sun, R, Zuo, T, et al. A novel susceptibility locus in MST1 and gene-gene interaction network for Crohn's disease in the Chinese population. J Cell Mol Med 2018;22(4): 2368-77.
Petrey, AC, Carol, A. The extracellular matrix in IBD: a dynamic mediator of inflammation. Curr Opin Gastroenterol 2017;33(4): 234.
Soroosh, A, Albeiroti, S, West, GA, et al. Crohn's disease fibroblasts overproduce the novel protein KIAA1199 to create proinflammatory hyaluronan fragments. Cell Mol Gastroenterol Hepatol 2016;2(3):358-68.
Albeiroti, S, Soroosh, A, de la Motte, CA. Hyaluronan's role in fibrosis: a pathogenic factor or a passive player? Biomed Res Int 2015;2015:790203.
Bessonov, K, Gusareva, ES, Van Steen, K. A cautionary note on the impact of protocol changes for genome-wide association SNP× SNP interaction studies: an example on ankylosing spondylitis. Hum Genet 2015;134(7):761-73.
Ma, L, Clark, AG, Keinan, A. Gene-based testing of interactions in association studies of quantitative traits. PLoS Genet 2013;9(2):e1003321.
Vsevolozhskaya, OA, Hu, F, Zaykin, DV. Detecting weak signals by combining small P-values in genetic association studies. Front Genet 2019;10:1051.
Yu, K, Li, Q, Bergen, AW, et al. Pathway analysis by adaptive combination of P-values. Genet Epidemiol 2009;33(8):700-9.
Becker, T, Knapp, M. A powerful strategy to account for multiple testing in the context of haplotype analysis. Am J Hum Genet 2004;75(4):561-70.
Yip, DKS, Chan, LL, Pang, IK, et al. A network approach to exploring the functional basis of gene-gene epistatic interactions in disease susceptibility. Bioinformatics 2018;34(10):1741-9.
Jia, P, Wang, L, Fanous, AH, et al. A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia. J Med Genet 2012;49(2):96-103.
Van Steen, K, Moore, J. How to increase our belief in discovered statistical interactions via large-scale association studies?. Hum Genet 2019;138(4):293-305.
Mahachie John, JM, Cattaert, T, Van Lishout, FV, et al. Lower-order effects adjustment in quantitative traits modelbased multifactor dimensionality reduction. PLoS One 2012;7(1): e29594.
Gusareva, ES, Van Steen, K. Practical aspects of genome-wide association interaction analysis. Hum Genet 2014;133(11):1343-58.
Das, J, Yu, H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol 2012;6(1):92.
Szklarczyk, D, Gable, AL, Lyon, D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(D1):D607-13.
Watanabe, K, Taskesen, E, van Bochoven, A, et al. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 2017;8(1):1826.
GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 2017;550(7675):204-13.
Liu, JZ, Van Sommeren, S, Huang, H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015;47(9):979.
Traherne, J. Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet 2008;35(3):179-92.
Hemani, G, Shakhbazov, K, Westra, HJ, et al. Detection and replication of epistasis influencing transcription in humans. Nature 2014;508(7495):249-53.
Zaykin, DV, Zhivotovsky, LA, Westfall, PH, et al. Truncated product method for combining P-values. Genet Epidemiol 2002;22(2):170-85.
Ge, Y, Dudoit, S, Speed, TP. Resampling-based multiple testing for microarray data analysis. Test 2003;12(1): 1-77.
Subramanian, A, Tamayo, P, Mootha, VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102(43):15545-50.
Liberzon, A, Birger, C, Thorvaldsdóttir, H, et al. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst 2015;1(6):417-25.
Duroux, D, Climente-González, H, Azencott, CA, et al. Supporting data for "Interpretable network-guided epistasis detection." GigaScience Database 2021. http://doi.org/10.5524/100960.