Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Explore
Search
Special collections
Statistics
News
Help
Start on ORBi
Deposit
Profile
Publication List
Add your ORCID
Tutorials
Legal Information
Training sessions
About
What's ORBi ?
Impact and visibility
Around ORBi
About statistics
About metrics
OAI-PMH
ORBi team
Release Notes
Back
Home
Detailled Reference
Request a copy
Unpublished conference/Abstract (Scientific congresses and symposiums)
Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-ToF-MS, Chemometrics, and Machine Learning
Gaida, Meriem
;
Zou, Yun
;
Franchina, Flavio A.
et al.
2022
•
19th International GCxGC Symposium
Peer reviewed
Permalink
https://hdl.handle.net/2268/291713
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
GCxGCsymposium-MG.pdf
Publisher postprint (56.97 kB)
Request a copy
All documents in ORBi are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Keywords :
Coffee, decaffeination, Chemometrics, machine Learning; two-dimensional gas chromatography
Disciplines :
Chemistry
Author, co-author :
Gaida, Meriem
;
Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Zou, Yun
Franchina, Flavio A.;
University of Ferrara > Department of Chemical, Pharmaceutical and Agricultural Sciences
Stefanuto, Pierre-Hugues
;
Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Focant, Jean-François
;
Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Language :
English
Title :
Distinguishing between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-ToF-MS, Chemometrics, and Machine Learning
Publication date :
02 June 2022
Event name :
19th International GCxGC Symposium
Event date :
29/05/2022-02/06/2022
Audience :
International
Peer reviewed :
Peer reviewed
Name of the research project :
“Chemical Information Mining in a Complex World”
Funders :
EOS - The Excellence Of Science Program
Funding number :
30897864
Available on ORBi :
since 03 June 2022
Statistics
Number of views
81 (7 by ULiège)
Number of downloads
4 (3 by ULiège)
More statistics
Bibliography
Similar publications
Contact ORBi