[en] Forest diseases caused by invasive fungal pathogens are becoming more common, sometimes with dramatic consequences to forest ecosystems. The development of early detection systems is necessary for efficient surveillance and to mitigate the impact of invasive pathogens. Windborne spores are an important pathway for introduction of fungal pathogens into new areas; the design of spore trapping devices adapted to forests, capable of collecting different types of spores, and aligned with development of efficient molecular methods for detection of the pathogen, should help forest managers anticipate new disease outbreaks. Two types of Rotorod samplers were evaluated for the collection of airborne inoculum of forest fungal pathogens with a range of spore sizes in five forest types. Detection was by specific quantitative PCR (qPCR) and by high-throughput sequencing (HTS) of amplified internal transcribed spacer sequences using a new bioinformatic pipeline, FungiSearch, developed for diagnostic purposes. Validation of the pipeline was conducted on mock communities of 10 fungal species belonging to different taxa. Although the sensitivity of the new HTS pipeline was lower than the specific qPCR, it was able to detect a wide variety of fungal pathogens. FungiSearch is easy to use, and the reference database is updatable, making the tool suitable for rapid identification of new pathogens. This new approach combining spore trapping and HTS detection is promising as a diagnostic tool for invasive fungal pathogens.
Disciplines :
Biotechnology
Author, co-author :
Chandelier, Anne ; Walloon Agricultural Research Centre, Department of Life Sciences, B-5030 Gembloux, Belgium
Hulin, Julie ; Walloon Agricultural Research Centre, Department of Valorisation of Agricultural Products, B-5030 Gembloux, Belgium
San Martin, Gilles; Walloon Agricultural Research Centre, Department of Life Sciences, B-5030 Gembloux, Belgium
Debode, Frédéric; Walloon Agricultural Research Centre, Department of Life Sciences, B-5030 Gembloux, Belgium
Massart, Sébastien ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Language :
English
Title :
Comparison of qPCR and Metabarcoding Methods as Tools for the Detection of Airborne Inoculum of Forest Fungal Pathogens.
Abarenkov, K., Nilsson, H. R., Larsson, K. H., Alexander, I. J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F., Tedersoo, L., Ursing, B. M., Vrålstad, T., Liimatainen, K., Peintner, U., and Kõljalg, U. 2010. The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol. 186:281-285.
Aguayo, J., Fourrier-Jeandel, C., Husson, C., and Ioos, R. 2018. Assessment of passive spore traps combined with high-throughput sequencing to study airborne fungal communities. Appl. Environ. Microbiol. 84:e02637-17.
Allen, E. A., and Humble, L. 2002. Non-indigenous species introductions: a threat to Canada’s forests and forest economy. Can. J. Plant Pathol. 24: 103-110.
Anslan, S., Nilsson, H., Wurzbacher, C., Baldrian, P., Tedersoo, L., and Bahram, M. 2018. Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. MycoKeys 39:29-40.
Aylor, D. E. 1993. Relative collection efficiency of Rotorod and Burkard spore samplers for airborne Venturia inaequalis ascospores. Phytopathology 83: 1116-1119.
Banchi, E., Gennaro Ametrano, C., Stanković, D., Verardo, P., Moretti, O., Gabrielli, F., Lazzarin, S., Borney, M. F., Tassan, F., Tretiach, M., Pallavicini, M., and Muggia, L. 2018. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS One 13: e0194489.
Banchi, E., Pallavicini, A., and Muggia, L. 2019. Relevance of plant and fungal DNA metabarcoding in aerobiology. Aerobiologia 36:9-23.
Baral, H. O., and Bremmann, M. 2014. Hymenoscyphus fraxineus vs. Hymenoscyphus albidus: a comparative light microscopic study on the causal agent of European ash dieback and related foliicolous, stroma-forming species. Mycology 5:228-290.
Bates, D., Mächler, M., Bolker, B., and Walker, S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1-48.
Bensch, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., de Jesus Yañez-Morales, M., and Crous, P. W. 2015. Common but different: the expanding realm of Cladosporium. Stud. Mycol. 82:23-74.
Bérubé, J. A., Gagné, P. N., Ponchart, J. P., Tremblay, E. D., and Bilodeau, G. 2018. Detection of Diplodia corticola spores in Ontario and Québec based on high throughput sequencing (HTS) methods. Can. J. Plant Pathol. 40: 378-386.
Blackwell, M. 2011. The fungi 1,2,3... 5.1 million species? Am. J. Bot. 98: 426-438.
Bodles, W. A., Fossdal, C. G., and Woodward, S. 2006. Multiplex real-time PCR detection of pathogen colonization in the bark and wood of Picea sitchensis clones differing in resistance to Heterobasidion annosum. Tree Physiol. 26:775-782.
Brasier, C. M. 1991. Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151-161.
Brown, J., and Hovmøller, M. S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297: 537-541.
Calderon, C., Ward, E., Freeman, J., and McCartney, A. 2002. Detection of airborne fungal spores sampled by rotating-arm and Hirst-type spore traps using polymerase chain reaction. J. Aerosol Sci. 33:283-296.
Chandelier, A., André, F., and Laurent, F. 2010. Detection of Chalara fraxinea in common ash (Fraxinus excelsior) using real time PCR. For. Pathol. 40: 87-95.
Chandelier, A., Helson, M., Dvorak, M., and Gischer, F. 2014. Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays. Plant Pathol. 63:1296-1305.
Chen, G., and Meentemeyer, R. K. 2016. Remote sensing of forest damage by diseases and insects. Pages 145-162 in: Remote Sensing for Sustainability. Q. Weng, ed. CRC Press, Boca Raton, FL.
Chen, W., Hambleton, S., Sufert, K. A., Carisse, O., Diarra, M. S., Peters, R. D., Lowe, C., Chapados, T. T., and Levesque, C. A. 2018. Assessing performance of spore samplers in monitoring aeromycobiota and fungal plant pathogen diversity in Canada. Appl. Environ. Microbiol. 84:e02601-17.
Chornesky, E. A., Bartuska, A. M., Aplet, G. H., Britton, K. O., Cummings-Carlson, J., Davis, F. W., Eskow, J., Gordon, D. R., Gottschalk, K. W., Haack, R. A., Hansen, A. J., Mack, R. N., Rahel, F. J., Shannon, M. A., Wainger, L. A., and Wigley, T. B. 2005. Science priorities for reducing the threat of invasive species to sustainable forestry. Bioscience 55:335-348.
Crocker, E., Condon, B., Almsaeed, A., Jarret, B., Dana Nelson, C., Abbott, A. G., Main, D., and Staton, M. 2020. TreeSnap: A citizen science app connecting tree enthusiasts and forest scientists. Plants People Planet 2: 47-52.
Debode, F., Hulin, J., Charloteaux, B., Coppieters, W., Hanikenne, M., Karim, L., and Berben, G. 2019. Detection and identification of transgenic events by next generation sequencing combined with enrichment technologies. Sci. Rep. 9:15595.
Drenkhan, R., Solheim, H., Bogacheva, A., Riit, T., Adamson, K., Drenkhan, T., Maaten, T., and Hietala, A. M. 2017. Hymenoscyphus fraxineus is a leaf pathogen of local Fraxinus species in the Russian Far East. Plant Pathol. 66: 490-500.
Duvivier, M., Dedeurwaerder, G., De Proft, M., Moreau, J. M., and Legrève, A. 2013. Real-time PCR quantification and spatio-temporal distribution of airborne inoculum of Mycosphaerella graminicola in Belgium. Eur. J. Plant Pathol. 137:325-341.
Dvořák, M., Janoš, P., Botella, L., Rotkova, G., and Zas, R. 2017. Spore dispersal patterns of Fusarium circinatum on an infested Montery Pine forest in North-Western Spain. Forests 8:432.
Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460-2461.
Edgar, R. C. 2013. UPARSE; Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998.
Edgar, R. C. 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 081257.
Edgar, R. C., and Flyvbjerg, H. 2015. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31: 3476-3482.
Edmonds, R. L. 1972. Collection efficiency of Rotorod samplers for sampling fungus spores in the atmosphere. Plant Dis. Rep. 56:704-708.
EPPO. 2018. PM7/76(5) – Use of EPPO Diagnostic standards. OEPP EPPO Bull 48:373-377.
Gardes, M., and Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2:113-118.
Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P., and Santini, A. 2016. Drivers of emerging fungal diseases of forest trees. For. Ecol. Manage. 381: 235-246.
Gonthier, P., Garbelotto, M. M., and Nicoletti, G. 2005. Seasonal patterns of spore deposition of Heterobasidion species in four forests of the Western Alps. Phytopathology 95:759-767.
Grosdidier, M., Ioos, R., Husson, C., Cael, O., Scordia, T., and Marçais, B. 2018. Tracking the invasion: dispersal of Hymenoscyphus fraxineus airborne inoculum at different scales. FEMS Microbiol. Ecol. 94: fiy049.
Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V., and Sieber, T. N. 2014. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol. Plant Pathol. 15:5-21.
Jackson, S. L., and Bayliss, K. L. 2011. Spore traps need improvements to fulfil plant biosecurity requirements. Plant Pathol. 60:801-810.
Klapwijk, M. J., Hopkins, A. J. M., Eriksson, L., Pettersson, M., Schroeder, M., Lindelöw, A., Rönnberg, J., Keskitalo, E. C. H., and Kenis, M. 2016. Reducing the risk of invasive forest pests and pathogens: combining legislation, targeted management and public awareness. Ambio:223-234.
Kowalski, T. 2006. Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For. Pathol. 36:264-270.
Levy, L., Castlebury, L. A., Carris, L. M., Meyer, R. J., and Pimentel, G. 2001. Internal transcribed spacer sequence–based phylogeny and polymerase chain reaction–restriction fragment Length polymorphism differentiation of Tilletia walkeri and T. indica. Phytopathology 91:935-940.
Lindahl, B. D., Nilsson, R. H., Tedersoo, L., Abarenkov, K., Carlsen, T., Kjøller, R., Kõljalg, U., Pennanen, T., Rosendahl, S., Stenlid, J., and Kauserud, H. 2013. Fungal community analysis by high throughput sequencing of amplified markers: a user’s guide. New Phytol. 199:288-299.
Lovett, G. M., Canham, C. D., Arthur, M. A., Weathers, K. C., and Fitzhugh, R. D. 2006. Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56:395-405.
Marçais, B., Kavkova, M., and Deprez-Loustau, M. L. 2009. Phenotypic variation in the phenology of ascospore production between European populations of oak powdery mildew. Ann. Sci. 66:814-822.
Marçais, B., Piou, D., Dezette, D., and Desprez-Loustau, M. L. 2017. Can oak powdery mildew severity be explained by indirect effects of climate on the composition of the Erysiphe pathogenic complex? Phytopathology 107: 570-579.
Martin, R. R., Constable, F., and Tzanetakis, I. E. 2016. Quarantine regulations and the impact of modern detection methods. Annu. Rev. Phytopathol. 54: 189-205.
Massart, S., Olmos, O., Jijakli, H., and Candresse, T. 2014. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 188:90-96.
McCartney, H. A., Fitt, B. D. L., and Schmechel, D. 1997. Sampling bio-aerosols in plant pathology. J. Aerosol Sci. 28:349-364.
Nilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., and Tedersoo, L. 2019. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 17:95-109.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H. 2019. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan
Olmos, A., Boonham, N., Candresse, T., Gentit, P., Giovani, B., Kutnjak, D., Liefting, L., Maree, H. J., Minafra, A., Moreira, A., Nakhla, M. K., Petter, F., Ravnikar, M., Rodoni, B., Roenhorst, J. W., Rott, M., Ruiz-Garcıa, A. B., Santala, J., Stancanelli, G., van der Vlugt, R., Varveri, C., Westenberg, M., Wetzel, T., Ziebell, H., and Massart, S. 2018. High-throughput sequencing technologies for plant pest diagnosis: challenges and opportunities. OEPP EPPO Bull 48:219-224.
Oluseyi Osunmakinde, C., Selvarajan, R., Mamba, B. B. and Msagati, T. A. M. 2019. Profiling bacterial diversity and potential pathogens in wastewater treatment plants using high-throughput sequencing analysis. Microorganisms 7:506.
Paskey, A. C., Frey, K. G., Schroth, G., Gross, S., Hamilton, T., and Bishop-Lilly, K. A. 2019. Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples. BMC Genomics 20:155.
Purahong, W., Pietsch, K. A., Bruelheide, H., Wirth, C., Buscot, F., and Wubet, T. 2019. Potential links between wood-inhabiting and soil fungal communities: evidence from high throughput sequencing. MicrobiologyOpen 8: e00856.
Quesada, T., Hughes, J., Smith, K., Shin, K., James, P., and Smith, J. 2018. A low-cost spore trap allows collection and real-time PCR quantification of airborne Fusarium circinatum. Forests 9:586.
R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Ramsfield, T. D., Bentz, B. J., Faccoli, M., Jactel, H., and Brockerhoff, E. G. 2016. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impact. Forestry. Int. J. For. Res. 89: 245-252.
Rigling, D., and Prospero, S. 2018. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol. Plant Pathol. 19:7-20.
Sache, Y., Roy, A. S., Suffert, F., and Desprez-Loustau, M. L. 2011. Invasive plant pathogens in Europe. Pages 227-242 in: Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal and Microbe Species. D. Pimental, ed. CRC Press, London.
Santini, A., Ghelardini, L., De Pace, C., Desprez‐Loustau, M. L., Capretti, P., Chandelier, A., Cech, T., Chira, D., Diamandis, S., Gaitniekis, T., Hantula, J., Holdenrieder, O., Jankovsky, L., Jung, T., Jurc, D., Kirisits, T., Kunca, A., Lygis, V., Malecka, M., Marcais, B., Schmitz, S., Schumacher, J., Solheim, H., Solla, A., Szabò, I., Tsopelas, P., Vannini, A., Vettraino, A. M., Webber, J., Woodward, S., and Stenlid, J. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 197:238-250.
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W. and Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc. Natl. Acad. Sci. USA 109: 6241-6246.
Shaw, C. G., and Florance, E. R. 1979. Scanning electron microscopy reveals differences in surface morphology between basidiospores and conidia of Heterobasidion annosum. Eur. J. Forest Pathol. 9:249-254.
Simpson, E. H. 1949. Measurement of diversity. Nature 163:688.
Stenlid, J., Oliva, J., Boberg, J., and Hopkins, A. J. M. 2011. Emerging diseases in European forests ecosystems and responses in society. Forests 2: 486-504.
Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Warrall, J. J., and Woods, A. J. 2011. Climate change and forest diseases. Plant Pathol. 60:133-149.
Sylvestre-Guinot, G., and Delatour, C. 1978. Recherches sur les variations saisonnières de l’inoculum aérien du Fomes annosus (Fr.) Cooke dans l’est de la France. Ann. For. Sci. 35:151-163.
Takamatsu, S., Braun, U., Limkaisang, S., Kom-un, S., Sato, Y., and Cunnington, J. H. 2007. Phylogeny and taxonomy of the oak powdery mildew Erysiphe alphitoides sensu lato. Mycol. Res. 111:809-826.
Tedersoo, L., Anslan, S., Bahram, M., Pölme, S., Riit, T., Liiv, I., Köljalg, U., Kisand, V., Nilsson, H., Hildebrand, F., Bork, P., and Abarenkov, K. 2015. Shotgun metagenomes and multiple primer pair–barcode combinations of amplicons reveal biases in metabarcoding analysis of fungi. MycoKeys 10: 1-43.
Tedersoo, L., Drenkhan, R., Anslan, S., Morales-Rodriguez, C., and Cleary, M. 2019. High-throughput identification and diagnostics of pathogens and pests: overview and practical recommendations. Mol. Ecol. Resour. 19: 47-76.
Toju, H., Tanabe, A. S., Yamamoto, S., and Sato, H. 2012. High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS One 7:e40863.
Tremblay, E. D., Duceppe, M. O., Béribé, J. A., Kimoto, T., Lemieux, C., and Bilodeau, G. 2018. Screening for exotic forest pathogens to increase survey capacity using metagenomics. Phytopathology 108:1509-1521.
Vettraino, A. M., Roques, A., Yart, A., Fan, J. T., Sun, J. H. and Vannini, A. 2015. Sentinel trees as a tool to forecast invasions of alien plant pathogens. PLoS One 10:e0120571.
Videira, S. I. R., Groenewald, J. Z., Nakashima, C., Braun, U., Barretto, R. W., de Wit, P. J. G. M., and Crous, P. W. 2017. Mycosphaerellaceae: chaos or clarity? Stud. Mycol. 87:257-421.
Weber, J. 2010. Pest risk analysis and invasion pathways for plant pathogens. N. Z. J. For. Sci. 40:S45-S56.
West, J. S., and Kimber, R. B. E. 2015. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 166:4-17.
White, T. J., Bruns, T. D., Lee, S. B., and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds. Academic Press, Cambridge, MA.
Wieczorek, T. M., Jørgensen, L. N., Hansen, A. L., Munk, L., and Justesen, A. F. 2014. Early detection of sugar beet pathogen Ramularia beticola in leaf and air samples using qPCR. Eur. J. Plant Pathol. 138:775-785.
Woo, P. C. Y., Leung, S. Y., To, K. K. W., Chan, J. F. W., Ngan, A. H. Y., Cheng, V. C. C., Lau, S. K. P., and Yuen, K. Y. 2010. Internal transcribed spacer region sequence heterogeneity in Rhizopus microsporus: implications for molecular diagnosis in clinical microbiology laboratories. J. Clin. Microbiol. 48:208-214.
Yang, R. H., Su, J. H., Shang, J. J., Wu, Y. Y., Li, Y., Bao, D. P., and Yao, Y. J. 2018. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS One 13:e0206428.
Zeng, Q. Y., Westermark, S. O., Rasmuson-Lestander, A., and Wang, X. R. 2006. Detection and quantification of Cladosporium in aerosols by real-time PCR. J. Environ. Monit. 8:153-160.
Zhao, Y., Tsang, C. C., Xiao, M., Cheng, J., Xu, Y., Loo, S. K., and Woo, P. C. 2015. Intra-genomic internal transcribed spacer region sequence heterogeneity and molecular diagnosis in clinical microbiology. Int. J. Mol. Sci. 16: 25067-25079.