foam; multicomponent reaction; emulsion polymerization; CO2 capture
Abstract :
[en] Amines and imidazolium are well-known functional groups in carbon dioxide capture applications because of their excellent interactions with CO2, but their combination and possible synergistic effects when combined in polymer foams have not yet been considered. This work reports an innovative one-pot water-mediated synthesis of bifunctional imidazolium/amine microcellular polymer foams containing tunable ratios of these functions by combining the Radziszewski multicomponent reaction and high internal phase emulsion (HIPE) polymerization in a one-pot manner. The resulting polymer foams have unique textural and structural properties exhibiting rapid CO2 sorption kinetics with good capacities and excellent ability to selectively capture CO2 from the gas mixture in spite of their low specific surface. The bifunctional amine/imidazolium foams showed superior CO2 capture performances compared to their monofunctional counterparts, indicating the synergy between the functional groups. Comparison with the corresponding non-porous bulk materials also proved that the imidazolium/amine bifunctionality must be incorporated in a highly porous morphology to beneficiate from efficient and fast CO2 uptake. The marked influence of both the amine/imidazolium ratio and the nature of the imidazolium counteranion on CO2 capture capacity under dry and humid conditions is demonstrated, as well as the outstanding multicyclic capture performance.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Stiernet, Pierre ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Mazaj, Matjaž; National Institute of Chemistry, Ljubljana, Slovenia
Kovačič, Sebastijan; National Institute of Chemistry, Ljubljana, Slovenia
Debuigne, Antoine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Bifunctional Imidazolium/Amine Polymer Foams: One-pot Synthesis and Synergistic Promotion of CO2 Sorption
Publication date :
2022
Journal title :
Chemical Engineering Journal
ISSN :
1385-8947
eISSN :
1873-3212
Publisher :
Elsevier BV
Volume :
446
Issue :
1
Pages :
137012
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Ministry of Education, Science and Technology of the Republic of Slovenia Slovenian Research Agency F.R.S.-FNRS - Fonds de la Recherche Scientifique
Jurjevec, S., Debuigne, A., Žagar, E., Kovačič, S., An environmentally benign post-polymerization functionalization strategy towards unprecedented poly(vinylamine) polyHIPEs. Polym. Chem. 12 (2021), 1155–1164, 10.1039/d0py01677b.
Nikjoo, D., Akhtar, F., Structured emulsion-templated porous copolymer based on photopolymerization for carbon capture. J. CO2 Util. 21 (2017), 473–479, 10.1016/j.jcou.2017.08.007.
Jurjevec, S., Žagar, E., Kovačič, S., Functional macroporous amphoteric polyelectrolyte monoliths with tunable structures and properties through emulsion-templated synthesis. J. Colloid Interface Sci. 575 (2020), 480–488, 10.1016/j.jcis.2020.05.016.
Wang, R., Li, W., Lu, R., Peng, J., Liu, X., Liu, K., Peng, H., A facile synthesis of cationic and super-hydrophobic polyHIPEs as precursors to carbon foam and adsorbents for removal of non-aqueous-phase dye. Colloids Surfaces A Physicochem. Eng. Asp., 605, 2020, 125334, 10.1016/j.colsurfa.2020.125334.
Kovačič, S., Preishuber-Pflügl, F., Pahovnik, D., Žagar, E., Slugovc, C., Covalent incorporation of the surfactant into high internal phase emulsion templated polymeric foams. Chem. Commun. 51 (2015), 7725–7728, 10.1039/C4CC09199J.
Mathieu, K., Jérôme, C., Debuigne, A., Influence of the macromolecular surfactant features and reactivity on morphology and surface properties of emulsion-templated porous polymers. Macromolecules 48 (2015), 6489–6498, 10.1021/acs.macromol.5b00858.
Khodabandeh, A., Arrua, R.D., Coad, B.R., Rodemann, T., Ohigashi, T., Kosugi, N., Thickett, S.C., Hilder, E.F., Morphology control in polymerised high internal phase emulsion templated via macro-RAFT agent composition: visualizing surface chemistry. Polym. Chem. 9 (2018), 213–220, 10.1039/C7PY01770G.
Mathieu, K., Jérôme, C., Debuigne, A., Macro- and near-mesoporous monoliths by medium internal phase emulsion polymerization: A systematic study. Polymer (Guildf). 99 (2016), 157–165, 10.1016/j.polymer.2016.07.012.
Mathieu, K., De Winter, J., Jérôme, C., Debuigne, A., Simultaneous synthesis and chemical functionalization of emulsion-templated porous polymers using nitroxide-terminated macromolecular surfactants. Polym. Chem. 8 (2017), 1850–1861, 10.1039/c7py00128b.
Nugent, P., Giannopoulou, E.G., Burd, S.D., Elemento, O., Giannopoulou, E.G., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L., Eddaoudi, M., Zaworotko, M.J., Porous materials with optimal adsorption thermodynamics and kinetics for co2 separation. Nature 495 (2013), 80–84, 10.1038/nature11893.
Saiwan, C., Muchan, P., De Montigny, D., Tontiwachwutikul, P., New poly(vinylbenzylchloride/divinylbenzene) adsorbent for carbon dioxide adsorption. Ii. Effect of amine functionalization. Energy Procedia 63 (2014), 2317–2322, 10.1016/j.egypro.2014.11.251.
Muchan, P., Saiwan, C., DeMontigny, D., Tontiwachwuthikul, P., Functionalisation of poly(high internal phase emulsion) with amine for CO2 capture. Chem. Eng. Trans. 35 (2013), 391–396, 10.3303/CET1335065.
He, H., Li, W., Zhong, M., Konkolewicz, D., Wu, D., Yaccato, K., Rappold, T., Sugar, G., David, N.E., Matyjaszewski, K., Reversible CO2 capture with porous polymers using the humidity swing. Energy Environ. Sci. 6 (2013), 488–493, 10.1039/c2ee24139k.
He, H., Li, W., Lamson, M., Zhong, M., Konkolewicz, D., Hui, C.M., Yaccato, K., Rappold, T., Sugar, G., David, N.E., Damodaran, K., Natesakhawat, S., Nulwala, H., Matyjaszewski, K., Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. Polymer 55 (2014), 385–394, 10.1016/j.polymer.2013.08.002.
Zhu, J., Wu, L., Bu, Z., Jie, S., Li, B.G., Synthesis and CO2 capture behavior of porous cross-linked polymers containing pendant triazole groups. Ind. Eng. Chem. Res. 56 (2017), 10155–10163, 10.1021/acs.iecr.7b01961.
Dejburum, P., Saiwan, C., Tontiwachwuthikul, P., Polyethyleneimine loading into high internal phase emulsion polymer for CO2 adsorption: Synthesis and characterization of the PolyHIPE. Chem. Eng. Trans. 29 (2012), 193–198, 10.3303/CET1229033.
Yin, J., Zhang, T., Schulman, E., Liu, D., Meng, J., Hierarchical porous metallized poly-melamine-formaldehyde (PMF) as a low-cost and high-efficiency catalyst for cyclic carbonate synthesis from CO2 and epoxides. J. Mater. Chem. A. 6 (2018), 8441–8448, 10.1039/C8TA00625C.
Han, J., Du, Z., Zou, W., Li, H., Zhang, C., Moisture-responsive hydrogel impregnated in porous polymer foam as CO2 adsorbent in high-humidity flue gas. Ind. Eng. Chem. Res. 54 (2015), 7623–7631, 10.1021/acs.iecr.5b01305.
Wang, Q., Liu, Y., Chen, J., Du, Z., Mi, J., Control of uniform and interconnected macroporous structure in PolyHIPE for enhanced CO2 adsorption/desorption kinetics. Environ. Sci. Technol. 50 (2016), 7879–7888, 10.1021/acs.est.6b00579.
Irani, M., Jacobson, A.T., Gasem, K.A.M., Fan, M., Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture. Energy. 157 (2018), 1–9, 10.1016/j.energy.2018.05.141.
Wang, Q., Ma, H., Chen, J., Du, Z., Mi, J., Interfacial control of polyHIPE with nano-TiO2 particles and polyethylenimine toward actual application in CO2 capture. J. Environ. Chem. Eng. 5 (2017), 2807–2814, 10.1016/j.jece.2017.05.034.
Wang, Q., Ma, H., Chen, J., Du, Z., Mi, J., Facile synthesis of polyethylenimine and nano-TiO2 particles functionalized PolyHIPE beads for CO2 capture. Polym. Sci. - Ser. B. 60 (2018), 380–386, 10.1134/S1560090418030181.
Zhu, J., Wu, L., Bu, Z., Jie, S., Li, B.G., Polyethylenimine-grafted HKUST-type MOF/PolyHIPE porous composites (PEI@PGD-H) as highly efficient CO2 adsorbents. Ind. Eng. Chem. Res. 58 (2019), 4257–4266, 10.1021/acs.iecr.9b00213.
Mazaj, M., Logar, N.Z., Žagar, E., Kovačič, S., A facile strategy towards a highly accessible and hydrostable MOF-phase within hybrid polyHIPEs through in situ metal-oxide recrystallization. J. Mater. Chem. A. 5 (2017), 1967–1971, 10.1039/C6TA10886E.
Mazaj, M., Bjelica, M., Žagar, E., Logar, N.Z., Kovačič, S., Zeolite nanocrystals embedded in microcellular carbon foam as a high-performance CO2 capture adsorbent with energy-saving regeneration properties. ChemSusChem 13 (2020), 2089–2097, 10.1002/cssc.201903116.
Qian, W., Texter, J., Yan, F., Frontiers in poly(ionic liquid)s: syntheses and applications. Chem. Soc. Rev. 46 (2017), 1124–1159, 10.1039/C6CS00620E.
Zhang, S., Dokko, K., Watanabe, M., Porous ionic liquids: synthesis and application. Chem. Sci. 6 (2015), 3684–3691, 10.1039/C5SC01374G.
Zulfiqar, S., Sarwar, M.I., Mecerreyes, D., Polymeric ionic liquids for CO 2 capture and separation: potential, progress and challenges. Polym. Chem. 6 (2015), 6435–6451, 10.1039/C5PY00842E.
Wang, X., Zhou, Y., Guo, Z., Chen, G., Li, J., Shi, Y., Liu, Y., Wang, J., Heterogeneous conversion of CO 2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s. Chem. Sci. 6 (2015), 6916–6924, 10.1039/C5SC02050F.
Sun, J.-K., Antonietti, M., Yuan, J., Nanoporous ionic organic networks: from synthesis to materials applications. Chem. Soc. Rev. 45 (2016), 6627–6656, 10.1039/C6CS00597G.
Guo, Z., Jiang, Q., Shi, Y., Li, J., Yang, X., Hou, W., Zhou, Y., Wang, J., Tethering dual hydroxyls into mesoporous poly(ionic liquid)s for chemical fixation of CO2at ambient conditions: A combined experimental and theoretical study. ACS Catal. 7 (2017), 6770–6780, 10.1021/acscatal.7b02399.
Wilke, A., Yuan, J., Antonietti, M., Weber, J., Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). ACS Macro Lett. 1 (2012), 1028–1031, 10.1021/mz3003352.
Feng, X., Gao, C., Guo, Z., Zhou, Y., Wang, J., Pore structure controllable synthesis of mesoporous poly(ionic liquid)s by copolymerization of alkylvinylimidazolium salts and divinylbenzene. RSC Adv. 4 (2014), 23389–23395, 10.1039/c4ra03163f.
Dani, A., Crocellà, V., Magistris, C., Santoro, V., Yuan, J., Bordiga, S., Click-based porous cationic polymers for enhanced carbon dioxide capture. J. Mater. Chem. A. 5 (2017), 372–383, 10.1039/C6TA08574A.
Boyère, C., Favrelle, A., Léonard, A.F., Boury, F., Jérôme, C., Debuigne, A., Macroporous poly(ionic liquid) and poly(acrylamide) monoliths from CO 2-in-water emulsion templates stabilized by sugar-based surfactants. J. Mater. Chem. A. 1 (2013), 8479–8487, 10.1039/c3ta11073g.
Mathieu, K., Jérôme, C., Debuigne, A., Macroporous poly(ionic liquid)/ionic liquid gels via CO2-based emulsion-templating polymerization. Polym. Chem. 9 (2018), 428–437, 10.1039/C7PY01952A.
Stiernet, P., Aqil, A., Zhu, X., Debuigne, A., Multicomponent radziszewski emulsion polymerization toward macroporous poly(ionic liquid) catalysts. ACS Macro Lett. 9 (2020), 134–139, 10.1021/acsmacrolett.9b00942.
Saxer, S., Marestin, C., Mercier, R., Dupuy, J., The multicomponent Debus-Radziszewski reaction in macromolecular chemistry. Polym. Chem. 9 (2018), 1927–1933, 10.1039/c8py00173a.
Llevot, A., Boukis, A.C., Oelmann, S., Wetzel, K., Meier, M.A.R., An update on isocyanide-based multicomponent reactions in polymer science. Top. Curr. Chem. 375 (2017), 1–29, 10.1007/s41061-017-0153-4.
Yang, B., Zhao, Y., Wei, Y., Fu, C., Tao, L., The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polym. Chem. 6 (2015), 8233–8239, 10.1039/C5PY01398D.
Kakuchi, R., Multicomponent reactions in polymer synthesis. Angew. Chemie - Int. Ed. 53 (2014), 46–48, 10.1002/anie.201305538.
Esposito, D., Kirchhecker, S., Antonietti, M., A sustainable route towards imidazolium building blocks based on biomass molecules. Chem. – A Eur. J. 19 (2013), 15097–15100, 10.1002/chem.201302806.
Privalova, E.I., Karjalainen, E., Nurmi, M., Mäki-Arvela, P., Eränen, K., Tenhu, H., Murzin, D.Y., Mikkola, J.-P., Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. ChemSusChem 6 (2013), 1500–1509, 10.1002/cssc.201300120.
Aquino, A.S., Bernard, F.L., Borges, J.V., Mafra, L., Vecchia, F.D., Vieira, M.O., Ligabue, R., Seferin, M., Chaban, V.V., Cabrita, E.J., Einloft, S., Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Adv. 5 (2015), 64220–64227, 10.1039/C5RA07561K.
Besnard, M., Cabaço, M.I., Chávez, F.V., Pinaud, N., Sebastião, P.J., Coutinho, J.A.P., Danten, Y., On the spontaneous carboxylation of 1-butyl-3-methylimidazolium acetate by carbon dioxide. Chem. Commun. 48 (2012), 1245–1247, 10.1039/C1CC16702B.
McCann, N., Phan, D., Wang, X., Conway, W., Burns, R., Attalla, M., Puxty, G., Maeder, M., Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution. J. Phys. Chem. A. 113 (2009), 5022–5029, 10.1021/jp810564z.
Drage, T.C., Snape, C.E., Stevens, L.A., Wood, J., Wang, J., Cooper, A.I., Dawson, R., Guo, X., Satterley, C., Irons, R., Materials challenges for the development of solid sorbents for post-combustion carbon capture. J. Mater. Chem. 22 (2012), 2815–2823, 10.1039/C2JM12592G.