Understanding autonomous behaviour development: Exploring the developmental contributions of context-tracking and task selection to self-directed cognitive control.
Frick, Aurélien; Brandimonte, Maria A; Chevalier, Nicolas
cognitive control development; context-tracking; self-directed control; task selection; voluntary task-switching; Developmental and Educational Psychology; Cognitive Neuroscience
Abstract :
[en] Gaining autonomy is a key aspect of growing up and cognitive control development across childhood. However, little is known about how children engage cognitive control in an autonomous (or self-directed) fashion. Here, we propose that in order to successfully engage self-directed control, children identify, and achieve goals by tracking contextual information and using this information to select relevant tasks. To disentangle the respective contributions of these processes, we manipulated the difficulty of context-tracking via altering the presence or absence of contextual support (Study 1) and the difficulty of task selection by varying task difficulty (a)symmetry (Study 2) in 5-6 and 9-10-year-olds, and adults. Results suggested that, although both processes contribute to successful self-directed engagement of cognitive control, age-related progress mostly relates to context-tracking.
Disciplines :
Theoretical & cognitive psychology
Author, co-author :
Frick, Aurélien ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Psychology, University of Edinburgh, Edinburgh, UK ; Laboratory of Experimental Psychology, Suor Orsola Benincasa University, Naples, Italy
Brandimonte, Maria A; Laboratory of Experimental Psychology, Suor Orsola Benincasa University, Naples, Italy
Chevalier, Nicolas; Department of Psychology, University of Edinburgh, Edinburgh, UK
Language :
English
Title :
Understanding autonomous behaviour development: Exploring the developmental contributions of context-tracking and task selection to self-directed cognitive control.
We thank Helen Wright for proof‐reading the current paper and helpful comments made on previous versions of this paper. This research was funded by a doctoral scholarship from Suor Orsola Benincasa University and Research Grant Support from the University of Edinburgh awarded to Aurélien Frick.
Arrington, C. M., & Logan, G. D. (2004). The cost of a voluntary task switch. Psychological Science, 15(9), 610–615. https://doi.org/10.1111/j.0956-7976.2004.00728.x
Arrington, C. M., Reiman, K. M., & Weaver, S. M. (2014). Voluntary task-switching. In (J. A. Grange & G. Houghton Eds.), Task switching and cognitive control (pp. 117–136). Oxford University Press.
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193–200. https://doi.org/10.1016/j.tics.2008.02.004
Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of behavior. In Trends in cognitive sciences (Vol., 22, Issue (2), pp. 170–188). Elsevier Ltd. https://doi.org/10.1016/j.tics.2017.11.005
Barker, J. E., & Munakata, Y. (2015). Developing self-directed executive functioning: Recent findings and future directions. Mind, Brain, and Education, 9(2), 92–99. https://doi.org/10.1111/mbe.12071
Barker, J. E., Semenov, A. D., Michaelson, L., Provan, L. S., Snyder, H. R., & Munakata, Y. (2014). Less-structured time in children's daily lives predicts self-directed executive functioning. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00593
Bates, D., Mächler, M., & Bolker, B. (2015). Fitting linear mixed-effects models using (lme4). Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Broeker, L., Liepelt, R., Poljac, E., Künzell, S., Ewolds, H., de Oliveira, R. F., & Raab, M. (2018). Multitasking as a choice: A perspective. Psychological Research, 82(1), 12–23. https://doi.org/10.1007/s00426-017-0938-7
Camos, V., & Barrouillet, P. (2018). Working memory in development. London, UK: Routledge.
Chatham, C. H., & Badre, D. (2015). Multiple gates on working memory. In Current opinion in behavioral sciences (Vol., 1, pp. 23–31). Elsevier Ltd. https://doi.org/10.1016/j.cobeha.2014.08.001
Chatham, C. H., Frank, M. J., & Badre, D. (2014). Corticostriatal output gating during selection from working memory. Neuron, 81(4), 930–942. https://doi.org/10.1016/j.neuron.2014.01.002
Chevalier, N. (2015). Executive function development: Making sense of the environment to behave adaptively. Current Directions in Psychological Science, 24(5), 363–368. https://doi.org/10.1177/0963721415593724
Chevalier, N., & Blaye, A. (2009). Setting goals to switch between tasks: Effect of cue transparency on children's cognitive flexibility. Developmental Psychology, 45(3), 782–797. https://doi.org/10.1037/a0015409
Chevalier, N., Chatham, C. H., & Munakata, Y. (2014). The practice of going helps children to stop: The importance of context monitoring in inhibitory control. Journal of Experimental Psychology: General, 143(3), 959–965. https://doi.org/10.1037/a0035868
Chevalier, N., Dauvier, B., & Blaye, A. (2018). From prioritizing objects to prioritizing cues: A developmental shift for cognitive control. Developmental Science, 21(2), e12534. https://doi.org/10.1111/desc.12534
Craig, F., Margari, F., Legrottaglie, A. R., Palumbi, R., de Giambattista, C., & Margari, L. (2016). A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. In Neuropsychiatric disease and treatment (Vol., 12, pp. 1191–1202). Dove Medical Press Ltd. https://doi.org/10.2147/NDT.S104620
Dauvier, B., Chevalier, N., & Blaye, A. (2012). Using finite mixture of GLMs to explore variability in children's flexibility in a task-switching paradigm. Cognitive Development, 27, 440–454. https://doi.org/10.1016/j.cogdev.2012.07.004
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
Doebel, S., & Zelazo, P. D. (2015). A meta-analysis of the Dimensional Change Card Sort: Implications for developmental theories and the measurement of executive function in children. In Developmental Review (Vol., 38, pp. 241–268). Mosby Inc. https://doi.org/10.1016/j.dr.2015.09.001
Freier, L., Cooper, R. P., & Mareschal, D. (2017). Preschool children's control of action outcomes. Developmental Science, 20(2), e12354. https://doi.org/10.1111/desc.12354
Freier, L., Gupta, P., Badre, D., & Amso, D. (2021). The value of proactive goal setting and choice in 3- to 7-year-olds’ use of working memory gating strategies in a naturalistic task. Developmental Science, 24(1). https://doi.org/10.1111/desc.13017
Frick, A., Brandimonte, M. A., & Chevalier, N. (2019). Voluntary task switching in children: Switching more reduces the cost of task selection. Developmental Psychology, 55(8), 1615–1625. https://doi.org/10.1037/dev0000757
Frick, A., Brandimonte, M. A., & Chevalier, N. (2021). Disentangling the respective contribution of task selection and task execution to self-directed cognitive control development. Child Development, 92(4), 1309–1324. https://doi.org/10.1111/cdev.13479
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. In Cortex (Vol., 86, pp. 186–204). Masson SpA. https://doi.org/10.1016/j.cortex.2016.04.023
Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940–947. https://doi.org/10.1038/nn1724
Kray, J., Eber, J., & Karbach, J. (2008). Verbal self-instructions in task switching: A compensatory tool for action-control deficits in childhood and old age? Developmental Science, 11(2), 223–236. https://doi.org/10.1111/j.1467-7687.2008.00673.x
Kray, J., Gaspard, H., Karbach, J., & Blaye, A. (2013). Developmental changes in using verbal self-cueing in task-switching situations: The impact of task practice and task-sequencing demands. Frontiers in Psychology, 4, 940. https://doi.org/10.3389/fpsyg.2013.00940
Lenartowicz, A., & McIntosh, A. R. (2005). The role of anterior cingulate cortex in working memory is shaped by functional connectivity. Journal of Cognitive Neuroscience, 17(7), 1026–1042. https://doi.org/10.1162/0898929054475127
Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online at: https://CRAN.R-project.org/package=emmeans
Liefooghe, B., Demanet, J., & Vandierendonck, A. (2010). Persisting activation in voluntary task switching: It all depends on the instructions. Psychonomic Bulletin & Review, 17(3), 381–386. https://doi.org/10.3758/PBR.17.3.381
Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 1423–1442. https://doi.org/10.1037/0278-7393.22.6.1423
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
Millington, R. S., Poljac, E., & Yeung, N. (2013). Between-task competition for intentions and actions. Quarterly Journal of Experimental Psychology, 66(8), 1504–1516. https://doi.org/10.1080/17470218.2012.746381
Mittelstädt, V., Dignath, D., Schmidt-Ott, M., & Kiesel, A. (2018). Exploring the repetition bias in voluntary task switching. Psychological Research, 82(1), 78–91. https://doi.org/10.1007/s00426-017-0911-5
Mostofsky, S. H., & Simmonds, D. J. (2008). Response inhibition and response selection: Two sides of the same coin. Journal of Cognitive Neuroscience, 20(5), 751–761. MIT Press 238 Main St., Suite 500, Cambridge, MA 02142-1046USA journals-info@mit.edu. https://doi.org/10.1162/jocn.2008.20500
Munakata, Y., Snyder, H. R., & Chatham, C. H. (2012). Developing cognitive control: Three key transitions. Current Directions in Psychological Science, 21(2), 71–77. https://doi.org/10.1177/0963721412436807
O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–328. https://doi.org/10.1162/089976606775093909
Peng, A., Kirkham, N. Z., & Mareschal, D. (2018). Task switching costs in preschool children and adults. Journal of Experimental Child Psychology, 172, 59–72. https://doi.org/10.1016/j.jecp.2018.01.019
Poljac, E., Haartsen, R., van der Cruijsen, R., Kiesel, A., & Poljac, E. (2018). Task intentions and their implementation into actions: Cognitive control from adolescence to middle adulthood. Psychological Research, 82(1), 215–229. https://doi.org/10.1007/s00426-017-0927-x
Powell, M. J. D. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives. (Report). Retrieved from http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
Rushworth, M. F. S., Hadland, K. A., Gaffan, D., & Passingham, R. E. (2003). The effect of cingulate cortex lesions on task switching and working memory. Journal of Cognitive Neuroscience, 15(3), 338–353. https://doi.org/10.1162/089892903321593072
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, S. (2021). afex: Analysis of Factorial Experiments. Available online at: https://CRAN.R-project.org/package=afex
Snyder, H. R., & Munakata, Y. (2010). Becoming self-directed: Abstract representations support endogenous flexibility in children. Cognition, 116(2), 155–167.
Snyder, H. R., & Munakata, Y. (2013). So many options, so little control: Abstract representations can reduce selection demands to increase children's self-directed flexibility. Journal of Experimental Child Psychology, 116(3), 659–673. https://doi.org/10.1016/j.jecp.2013.07.010
Team R Core. (2020). R: A language and environment for statistical computing.
Terry, C. P., & Sliwinski, M. J. (2012). Aging and random task switching: The role of endogenous versus exogenous task selection. Experimental Aging Research, 38(1), 87–109. https://doi.org/10.1080/0361073X.2012.637008
Umemoto, A., HajiHosseini, A., Yates, M. E., & Holroyd, C. B. (2017). Reward-based contextual learning supported by anterior cingulate cortex. Cognitive, Affective and Behavioral Neuroscience, 17(3), 642–651. https://doi.org/10.3758/s13415-017-0502-3
Unger, K., Ackerman, L., Chatham, C. H., Amso, D., & Badre, D. (2016). Working memory gating mechanisms explain developmental change in rule-guided behavior. Cognition, 155, 8–22. https://doi.org/10.1016/j.cognition.2016.05.020
Weaver, S. M., & Arrington, C. M. (2010). What's on your mind: The influence of the contents of working memory on choice. Quarterly Journal of Experimental Psychology, 63(4), 726–737. https://doi.org/10.1080/17470210903137180
White, S. J., Burgess, P. W., & Hill, E. L. (2009). Impairments on “open-ended” executive function tests in autism. Autism Research, 2(3), 138–147. https://doi.org/10.1002/aur.78
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York, NY: Springer-Verlag.
Yeung, N. (2010). Bottom-up influences on voluntary task switching: The elusive homunculus escapes. Journal of Experimental Psychology: Learning Memory and Cognition, 36(2), 348–362. https://doi.org/10.1037/a0017894