Abdelrazik, H., Spaggiari, G.M., Chiossone, L., Moretta, L., Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function. Eur. J. Immunol. 41 (2011), 3281–3290.
Agmon, G., Christman, K.L., Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid St M 20 (2016), 193–201.
Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L., Toren, A., Constantini, S., Rechavi, G., Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6 (2009), 0221–0231.
Amer, M.H., Rose, F.R.A.J., Shakesheff, K.M., Modo, M., White, L.J., Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. Regen. Med., 2, 2017, 13.
Aust, L., Devlin, B., Foster, S.J., Halvorsen, Y.D.C., Hicok, K., du Laney, T., Sen, A., Willingmyre, G.D., Gimble, J.M., Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6 (2004), 7–14.
Baker, N., Boyette, L.B., Tuan, R.S., Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70 (2015), 37–47.
Banfi, A., Muraglia, A., Dozin, B., Mastrogiacomo, M., Cancedda, R., Quarto, R., Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp. Hematol. 28 (2000), 707–715.
Baxter, M.A., Wynn, R.F., Jowitt, S.N., Wraith, J.E., Fairbairn, L.J., Bellantuono, I., Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22 (2004), 675–682.
Belotti, D., Gaipa, G., Bassetti, B., Cabiati, B., Spaltro, G., Biagi, E., Parma, M., Biondi, A., Cavallotti, L., Gambini, E., Pompilio, G., Full GMP-compliant validation of bone marrow-derived human CD133+ cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy. Biomed. Res. Int., 10, 2015, 2015.
Bernardo, M.E., Human mesenchymal stromal cells: biological characterization and clinical application. PhD thesis. 2010, Leiden University.
Bieback, K., Kern, S., Klüter, H., Eichler, H., Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22 (2004), 625–634.
Billing, A.M., Ben Hamidane, H., Dib, S.S., Cotton, R.J., Bhagwat, A.M., Kumar, P., Hayat, S., Yousri, N.A., Goswami, N., Suhre, K., Rafii, A., Graumann, J., Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Sci. Rep. 6 (2016), 1–15.
Bonab, M.M., Alimoghaddam, K., Talebian, F., Ghaffari, S.H., Ghavamzadeh, A., Nikbin, B., Aging of mesenchymal stem cell in vitro. BMC Cell Biol., 7, 2006, 14.
Bork, S., Pfister, S., Witt, H., Horn, P., Korn, B., Ho, A.D., Wagner, W., DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9 (2010), 54–63.
C. B. W. Group, A Mab: a case study in bioprocess development version 2.1. CMC Biotech Working Group, 278, 2009, 2009.
C. W. Group., Donation of starting material for cell-based advanced therapies: a SaBTO review. Advisory Committee on the Safety of Blood, Tissues and Organs, 2014, 2014, 141.
Caplan, A.I., Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213 (2007), 341–347.
Caplan, A.I., Correa, D., The MSC: an injury drugstore. Cell Stem Cell 9 (2011), 11–15.
Certa, A., Enea, M., Galante, G.M., La Fata, C.M., ELECTRE TRI-based approach to the failure modes classification on the basis of risk parameters: an alternative to the risk priority number. Comput. Ind. Eng. 108 (2017), 100–110.
Charbord, P., Livne, E., Gross, G., Häupl, T., Neves, N.M., Marie, P., Bianco, P., Jorgensen, C., Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience. Stem Cell Rev. 7 (2011), 32–42.
Chen, A.K.-L., Reuveny, S., Oh, S.K.W., Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol. Adv. 31 (2013), 1032–1046.
Choudhery, M.S., Badowski, M., Muise, A., Pierce, J., Harris, D.T., Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J. Transl. Med., 12, 2014, 8.
Chow, D.C., Wenning, L.A., Miller, W.M., Papoutsakis, E.T., Modeling pO2 distributions in the bone marrow hematopoietic compartment. II. modified kroghian models. Biophys. J. 81 (2001), 685–696.
Christ, B., Franquesa, M., Najimi, M., van der Laan, L.J.W., Dahlke, M.H., Cellular and molecular mechanisms of mesenchymal stem cell actions. Stem Cells Int., 1–2, 2017, 2017.
Colter, D.C., Class, R., DiGirolamo, C.M., Prockop, D.J., Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Cell Biol. 97 (2000), 3213–3218.
Conget, P.A., Minguell, J.J., Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J. Cell. Physiol. 181 (1999), 67–73.
Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G.L., Pistoia, V., Uccelli, A., Human mesenchymal stem cells modulate B-cell functions. Blood 107 (2006), 367–372.
Csete, M., Oxygen in the cultivation of stem cells. Ann. N. Y. Acad. Sci. 1049 (2005), 1–8.
De Ugarte, D.A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P.A., Zhu, M., Dragoo, J.L., Ashjian, P., Thomas, B., Benhaim, P., Chen, I., Fraser, J., Hedrick, M.H., Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174 (2003), 101–109.
Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P., Grisanti, S., Gianni, A.M., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99 (2002), 3838–3843.
Dimitriou, H., Linardakis, E., Martimianaki, G., Stiakaki, E., Perdikogianni, C.H., Charbord, P., Kalmanti, M., Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy 10 (2008), 125–133.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., Horwitz, E., Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy 8 (2006), 315–317.
Doucet, C., Ernou, I., Zhang, Y., Llense, J.-R., Begot, L., Holy, X., Lataillade, J.-J., Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J. Cell. Physiol. 205 (2005), 228–236.
Dressler, M.R., Butler, D.L., Boivin, G.P., Effects of age on the repair ability of mesenchymal stem cells in rabbit tendon. J. Orthop. Res. 23 (2005), 287–293.
Estrada, J.C., Albo, C., Benguría, A., Dopazo, A., López-Romero, P., Carrera-Quintanar, L., Roche, E., Clemente, E.P., Enríquez, J.A., Bernad, A., Samper, E., Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ. 19 (2012), 743–755.
Fehrer, C., Brunauer, R., Laschober, G., Unterluggauer, H., Reitinger, S., Kloss, F., Gülly, C., Gaßner, R., Lepperdinger, G., Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6 (2007), 745–757.
Fekete, N., Rojewski, M.T., Fürst, D., Kreja, L., Ignatius, A., Dausend, J., Schrezenmeier, H., GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLoS One, 7, 2012, e43255.
Fink, T., Abildtrup, L., Fogd, K., Abdallah, B.M., Kassem, M., Ebbesen, P., Zachar, V., Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells 22 (2004), 1346–1355.
François, M., Copland, I.B., Yuan, S., Romieu-Mourez, R., Waller, E.K., Galipeau, J., Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 14 (2012), 147–152.
Gad, S.C., Pharmaceutical Manufacturing Handbook. 2008, Wiley-Interscience, John Wiley and Sons, Inc., Hoboken, New Jersey.
Gentry, T., Foster, S., Winstead, L., Deibert, E., Fiordalisi, M., Balber, A., Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy 9 (2007), 259–274.
Godara, P., McFarland, C.D., Nordon, R.E., Design of bioreactors for mesenchymal stem cell tissue engineering. J. Chem. Technol. Biotechnol. 83 (2008), 408–420.
Golpanian, S., El-Khorazaty, J., Mendizabal, A., DiFede, D.L., Suncion, V., Karantalis, V., Fishman, J.E., Ghersin, E., Balkan, W., Hare, J.M., Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. J. Am. Coll. Cardiol. 65 (2015), 125–132.
Gronthos, S., Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell Sci. 116 (2003), 1827–1835.
Guo, K.-T., SchÄfer, R., Paul, A., Gerber, A., Ziemer, G., Wendel, H.P., A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24 (2006), 2220–2231.
Hanley, P.J., Mei, Z., Durett, A.G., Cabreira-Harrison, M.D.G., Klis, M., Li, W., Zhao, Y., Yang, B., Parsha, K., Mir, O., Vahidy, F., Bloom, D., Rice, R.B., Hematti, P., Savitz, S.I., Gee, A.P., Efficient manufacturing of therapeutic mesenchymal stromal cells using the quantum cell expansion system. Cytotherapy 16 (2014), 1048–1058.
Harms, J., Wang, X., Kim, T., Yang, X., Rathore, A.S., Defining process design space for biotech products: case study of pichia pastoris fermentation. Biotechnol. Prog. 24 (2008), 655–662.
Hayflick, L., The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37 (1964), 614–636.
Hoch, A.I., Leach, J.K., Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl. Med. 3 (2014), 643–652.
Hung, S.-P., Ho, J.H., Shih, Y.-R.V., Lo, T., Lee, O.K., Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J. Orthop. Res. 30 (2012), 260–266.
Ikebe, C., Suzuki, K., Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed. Res. Int., 11, 2014, 2014.
Kern, S., Eichler, H., Stoeve, J., Klüter, H., Bieback, K., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 2006.
Khandagade, A., Kale, V., Sinha, R., Critical quality risk analysis of process parameters of fluid bed coating technology. Int J Ind Eng Techn, 3, 2013, 10.
Kim, H.J., Park, J.-S., Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod 1 (2017), 1–10.
Kim, J., Kang, J.W., Park, J.H., Choi, Y., Choi, K.S., Park, K.D., Baek, D.H., Seong, S.K., Min, H.-K., Kim, H.S., Biological characterization of long-term cultured human mesenchymal stem cells. Arch. Pharm. Res. 32 (2009), 117–126.
Kletsas, D., Pratsinis, H., Mariatos, G., Zacharatos, P., Gorgoulis, V.G., The proinflammatory phenotype of senescent cells: the p53-mediated ICAM-1 expression. Ann. N. Y. Acad. Sci. 1019 (2004), 330–332.
Kong, C.M., Lin, H.D., Biswas, A., Bongso, A., Fong, C.-Y., Manufacturing of human wharton's jelly stem cells for clinical use: selection of serum is important. Cytotherapy 21 (2019), 483–495.
Kotobuki, N., Hirose, M., Takakura, Y., Ohgushi, H., Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif. Organs 28 (2004), 33–39.
Kretlow, J.D., Jin, Y.-Q., Liu, W., Zhang, W., Hong, T.-H., Zhou, G., Baggett, L.S., Mikos, A.G., Cao, Y., Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol., 9, 2008, 60.
Krtolica, A., Campisi, J., Integrating epithelial cancer, aging stroma and cellular senescence. Adv. Gerontol. 11 (2003), 109–116.
Kuznetsov, S.A., Mankani, M.H., Robey, P.G., Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70 (2000), 1780–1787.
Lange, C., Cakiroglu, F., Spiess, A.-N., Cappallo-Obermann, H., Dierlamm, J., Zander, A.R., Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J. Cell. Physiol. 213 (2007), 18–26.
Larson, B.L., Ylöstalo, J., Prockop, D.J., Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 26 (2008), 193–201.
Lennon, D.P., Haynesworth, S.E., Arm, D.M., Baber, M.A., Caplan, A.I., Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev. Dyn. 219 (2000), 50–62.
Li, T.-S., Marbán, E., Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28 (2010), 1178–1185.
Li, W., Ren, G., Huang, Y., Su, J., Han, Y., Li, J., Chen, X., Cao, K., Chen, Q., Shou, P., Zhang, L., Yuan, Z.-R., Roberts, A.I., Shi, S., Le, A.D., Shi, Y., Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 19 (2012), 1505–1513.
Margossian, T., Reppel, L., Makdissy, N., Stoltz, J.-F., Bensoussan, D., Huselstein, C., Mesenchymal stem cells derived from wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion. Bio-Med Mater Eng 22 (2012), 243–254.
Martin, C., Olmos, É., Collignon, M.-L., De Isla, N., Blanchard, F., Chevalot, I., Marc, A., Guedon, E., Revisiting MSC expansion from critical quality attributes to critical culture process parameters. Process Biochem. 59 (2017), 231–243.
Mendicino, M., Bailey, A.M., Wonnacott, K., Puri, R.K., Bauer, S.R., MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14 (2014), 141–145.
Merten, O.-W., Advances in cell culture: anchorage dependence. Philos T R Soc B, 37(1661), 2015, 20140040.
Metcalfe, S.M., Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Disc, 5, 2020, 3.
Meunier, P., Aaron, J., Edouard, C., Vignon, G., Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. a quantitative study of 84 iliac bone biopsies. Clin Orthop Relat R 80 (1971), 147–154.
Mindaye, S.T., Ra, M., Lo Surdo, J.L., Bauer, S.R., Alterman, M.A., Global proteomic signature of undifferentiated human bone marrow stromal cells: evidence for donor-to-donor proteome heterogeneity. Stem Cell Res. 11 (2013), 793–805.
Mitchell, M., Determining criticality—process parameters and quality attributes part II; design of experiments and data-driven criticality. BioPharm Int., 9, 2014, 2014.
Moll, G., Drzeniek, N., Kamhieh-Milz, J., Geissler, S., Volk, H.-D., Reinke, P., MSC therapies for COVID-19: importance of patient coagulopathy, thromboprophylaxis, cell product quality and mode of delivery for treatment safety and efficacy. Front. Immunol., 11, 2020, 1091.
Nasef, A., Mathieu, N., Chapel, A., Frick, J., Franois, S., Mazurier, C., Boutarfa, A., Bouchet, S., Gorin, N.-C., Thierry, D., Fouillard, L., Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84 (2007), 231–237.
Noer, A., Boquest, A.C., Collas, P., Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol., 8, 2007, 18.
Oedayrajsingh-Varma, M.J., van Ham, S.M., Knippenberg, M., Helder, M.N., Klein-Nulend, J., Schouten, T.E., Ritt, M.J.P.F., van Milligen, F.J., Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8 (2006), 166–177.
Pera, M.F., Reubinoff, B., Trounson, A., Human embryonic stem cells. J. Cell Sci. 113 (2000), 5–10.
Phinney, D.G., Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J. Cell. Biochem. 113 (2012), 2806–2812.
Phinney, D.G., Kopen, G., Righter, W., Webster, S., Tremain, N., Prockop, D.J., Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J. Cell. Biochem. 75 (1999), 424–436.
Pierdomenico, L., Diabetes mellitus during pregnancy interferes with the biological characteristics of wharton's jelly mesenchymal stem cells. Open Tissue Eng. Regen. Med. J. 4 (2011), 103–111.
Planat-Benard, V., Menard, C., André, M., Puceat, M., Perez, A., Garcia-Verdugo, J.-M., Pénicaud, L., Casteilla, L., Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94 (2004), 223–229.
Pountos, I., Corscadden, D., Emery, P., Giannoudis, P.V., Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 38 (2007), S23–S33.
Prather, W.R., Toren, A., Meiron, M., Ofir, R., Tschope, C., Horwitz, E.M., The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy 11:4 (2009), 427–434.
Rathore, A.S., Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 27 (2009), 546–553.
Rathore, A.S., Winkle, H., Quality by design for biopharmaceuticals. Nat. Biotechnol., 27, 2009, 9.
Rauscher, Frederick M., Goldschmidt-Clermont, Pascal J., Davis, Bryce H., Wang Tao, Gregg David, Ramaswami Priya, Pippen Anne M., annex Brian H., dong Chunming, and Taylor Doris a. aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108 (2003), 457–463.
Rombouts, W.J.C., Ploemacher, R.E., Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17 (2003), 160–170.
Rowley, J.A., Peak MSC—are we there yet?. Front Med, 5, 2018, 14.
Schallmoser, K., Bartmann, C., Rohde, E., Reinisch, A., Kashofer, K., Stadelmeyer, E., Drexler, C., Lanzer, G., Linkesch, W., Strunk, D., Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47 (2007), 1436–1446.
Schallmoser, K., Bartmann, C., Rohde, E., Bork, S., Guelly, C., Obenauf, A.C., Reinisch, A., Horn, P., Ho, A.D., Strunk, D., Wagner, W., Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95 (2010), 867–874.
Seely, R., Haury, J., Applications of failure modes and effects analysis to biotechnology manufacturing processes. Process validation in manufacturing of biopharmaceuticals, chapter 2, 2005, Addison-Wesley, Boca Raton, FL.
Sekiya, I., Larson, B.L., Smith, J.R., Pochampally, R., Cui, J.-G., Prockop, D.J., Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20 (2002), 530–541.
Sellappan, P.K., Modified prioritization methodology for risk priority number in failure mode and effects analysis. Int. J. Appl. Sci. Technol., 3(11), 2013.
Sethe, S., Scutt, A., Stolzing, A., Aging of mesenchymal stem cells. Ageing Res. Rev. 5 (2006), 91–116.
Sharma, R.R., Pollock, K., Hubel, A., McKenna, D., Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54 (2014), 1418–1437.
Shi, S., Gronthos, S., Chen, S., Reddi, A., Counter, C.M., Robey, P.G., Wang, C.-Y., Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat. Biotechnol. 20 (2002), 587–591.
Simmons, P.J., Torok-Storb, B., Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78 (1991), 55–62.
Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D., Baxevanis, C.N., Papamichail, M., Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24 (2006), 74–85.
Sotiropoulou, P.A., Perez, S.A., Salagianni, M., Baxevanis, C.N., Papamichail, M., Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24 (2006), 462–471.
Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., Marini, F., Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15 (2008), 730–738.
Spaggiari, G.M., Capobianco, A., Becchetti, S., Mingari, M.C., Moretta, L., Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107 (2006), 1484–1490.
Steigman, S.A., Armant, M., Bayer, L., Kao, G.S., Silberstein, L., Ritz, J., Fauza, D.O., Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J. Pediatr. Surg. 43 (2008), 1164–1169.
Stenderup, K., Justesen, J., Eriksen, E.F., Rattan, S.I.S., Kassem, M., Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J. Bone Miner. Res. 16 (2001), 1120–1129.
Stolzing, A., Jones, E., McGonagle, D., Scutt, A., Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing Dev. 129 (2008), 163–173.
Ten Ham, R.M.T., Hoekman, J., Hövels, A.M., Broekmans, A.W., Leufkens, H.G.M., Klungel, O.H., Challenges in advanced therapy medicinal product development: a survey among companies in Europe. Mol. Ther. 11 (2018), 121–130.
Tencerova, M., Frost, M., Figeac, F., Nielsen, T.K., Ali, D., Lauterlein, J.-J.L., Andersen, T.L., Haakonsson, A.K., Rauch, A., Madsen, J.S., Ejersted, C., Højlund, K., Kassem, M., Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep. 27:7 (2019), 2050–2062.
Thomas, R.J., Chandra, A., Liu, Y., Hourd, P.C., Conway, P.P., Williams, D.J., Manufacture of a human mesenchymal stem cell population using an automated cell culture platform. Cytotechnology 55 (2007), 31–39.
Tong, C.K., Vellasamy, S., Chong Tan, B., Abdullah, M., Vidyadaran, S., Fong Seow, H., Ramasamy, R., Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol. Int. 35 (2011), 221–226.
Trounson, A., McDonald, C., Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17 (2015), 11–22.
Trounson, A., Thakar, R.G., Lomax, G., Gibbons, D., Clinical trials for stem cell therapies. BMC Med., 9, 2011, 52.
Vangsness, C.T., Sternberg, H., Harris, L., Umbilical cord tissue offers the greatest number of harvestable mesenchymal stem cells for research and clinical application: a literature review of different harvest sites. Arthroscopy 31 (2015), 1836–1843.
Vazin, T., Freed, W.J., Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor. Neurol. Neurosci. 28 (2010), 589–603.
Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A., Ramesh, T., Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res. 347 (2012), 419–427.
Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., Ho, A.D., Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One, 3, 2008, 2213.
Wagner, W., Bork, S., Horn, P., Krunic, D., Walenda, T., Diehlmann, A., Benes, V., Blake, J., Huber, F.-X., Eckstein, V., Boukamp, P., Ho, A.D., Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One, 4, 2009, 5846.
Wagner, W., Bork, S., Lepperdinger, G., Joussen, S., Ma, N., Strunk, D., Koch, C., How to track cellular aging of mesenchymal stromal cells?. Aging 2 (2010), 224–230.
Wan, C., He, Q., McCaigue, M., Marsh, D., Li, G., Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs). J. Orthop. Res. 24 (2006), 21–28.
Wang, H.-S., Hung, S.-C., Peng, S.-T., Huang, C.-C., Wei, H.-M., Guo, Y.-J., Fu, Y.-S., Lai, M.-C., Chen, C.-C., Mesenchymal stem cells in the wharton's jelly of the human umbilical cord. Stem Cells 22 (2004), 1330–1337.
Wyrobnik, T.A., Ducci, A., Micheletti, M., Advances in human mesenchymal stromal cell-based therapies – towards an integrated biological and engineering approach. Stem Cell Res., 47, 2020, 101888.
Xiao, N., Huang, H.-Z., Li, Y., He, L., Jin, T., Multiple failure modes analysis and weighted risk priority number evaluation in FMEA. Eng. Fail. Anal. 18 (2011), 1162–1170.
Yang, H.J., Kim, K.-J., Kim, M.K., Lee, S.J., Ryu, Y.H., Seo, B.F., Oh, D.-Y., Ahn, S.-T., Lee, H.Y., Rhie, J.W., The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cells Tissues Organs 199 (2014), 373–383.
Yu, L.X., Amidon, G., Khan, M.A., Hoag, S.W., Polli, J., Raju, G.K., Woodcock, J., Understanding pharmaceutical quality by design. AAPS J. 16 (2014), 771–783.
Zaim, M., Karaman, S., Cetin, G., Isik, S., Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann. Hematol. 91 (2012), 1175–1186.
Zangi, L., Margalit, R., Reich-Zeliger, S., Bachar-Lustig, E., Beilhack, A., Negrin, R., Reisner, Y., Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27 (2009), 2865–2874.
Zanini, C., Severina, F., Lando, G., Fanizza, C., Cesana, E., Desidera, D., Bonifacio, M., Good design practices for an integrated containment and production system for advanced therapies. Biotechnol. Bioeng. 117 (2020), 2319–2330.
Zhou, S., Lechpammer, S., Greenberger, J.S., Glowacki, J., Hypoxia inhibition of adipocytogenesis in human bone marrow stromal cells requires transforming growth factor-β/Smad3 signaling. J. Biol. Chem. 280 (2005), 22688–22696.
Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., Hedrick, M.H., Multilineage cclls from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2001), 211–228.
Zuk, P.A., Zhu, M., Ashjian, P., Ugarte, D.A.D., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., Hedrick, M.H., Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell, 13, 2002, 17.