Abstract :
[en] Cu2O appears as a promising material for synthesizing p-type transparent semiconducting oxides with low electrical resistivity and high optical transmittance. We report on an exhaustive study of magnesium-doped cuprous oxide layers deposited by radio frequency magnetron sputtering. We present the characterization of the structural and optoelectronic properties of Mg:Cu2O thin films deposited at room temperature with varied argon plasma pressure. As a result, we found that by adjusting the Ar plasma pressure, Mg-doped Cu2O layers with high crystallinity combined with optimal electrical and optical properties can be synthesized. Using a plasma pressure of 13 mTorr, we obtained a transparent p-type material with crystallite size of 15 nm, electrical resistivity of 10.2 Ωcm, and optical band gap of 2.55 eV.
Scopus citations®
without self-citations
2