animal health; application; human health; preparation; xylo-oligosaccharides; Food Science; Nutrition and Dietetics
Abstract :
[en] Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have great prebiotic potential. XOS are the degraded products of xylan prepared via chemical, physical or enzymatic degradation. They are mainly composed of xylose units linked by β-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such as excellent water solubility and high temperature resistance, but also have a variety of functional biological activities including anti-inflammation, antioxidative, antitumor, antimicrobial properties and so on. Numerous studies have revealed in the recent decades that XOS can be applied to many food and feed products and exert their nutritional benefits. XOS have also been demonstrated to reduce the occurrence of human health-related diseases, improve the growth and resistance to diseases of animals. These effects open a new perspective on XOS potential applications for human consumption and animal production. Herein, this review aims to provide a general overview of preparation methods for XOS, and will also discuss the current application of XOS to human and animal health field.
Precision for document type :
Review article
Disciplines :
Animal production & animal husbandry
Author, co-author :
Chen, Yuxia ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Xie, Yining; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
Ajuwon, Kolapo M; Departments of Animal Sciences, Purdue University, West Lafayette, IN, United States
Zhong, Ruqing; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Li, Tao; Hunan United Bio-Technology Co., Changsha, China
Chen, Liang; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Hongfu; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Beckers, Yves ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Everaert, Nadia ; Université de Liège - ULiège > Département GxABT
Language :
English
Title :
Xylo-Oligosaccharides, Preparation and Application to Human and Animal Health: A Review.
The authors are grateful for the financial support from National Natural Science Foundation (31702119) and the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202006-02, ASTIPIAS07) in China.
Bitzios M, Fraser I, Haddock-Fraser J. Functional ingredients and food choice: results from a dual-mode study employing means-end-chain analysis and a choice experiment. Food Policy. (2011) 36:715–25. 10.1016/j.foodpol.2011.06.004
Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, et al. Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Diet Fibre. (2015) 5:62–71. 10.1016/j.bcdf.2014.12.003
Bali V, Panesar PS, Bera MB, Panesar R. Fructo-oligosaccharides. Production, purification and potential applications. Crit Rev Food Sci Nutr. (2015) 55:1475–90. 10.1080/10408398.2012.69408424915337
Canfora EE, Van D, Hermes G, Goossens GH, Jocken J, Holst JJ, et al. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, inobeseprediabetic individuals. Gastroenterology. (2017) 153:87–97. 10.1053/j.gastro.2017.03.05128396144
Yuan X, Zheng J, Jiao S, Cheng G, xFeng C, Du Y, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym Sep. (2019) 220:60–70. 10.1016/j.carbpol.2019.05.05031196551
Liu J, Yang S, Li X, Yan Q, Jiang Z. Alginate oligosaccharides: production, biological activities, potential applications. Compr Rev Food Sci Food Saf. (2019) 18:1859–81. 10.1111/1541-4337.1249433336967
Jain I, Kumar V, Satyanarayana T. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol. (2015) 53:131–42. Available online at: http://nopr.niscair.res.in/handle/123456789/3074425872243
Aachary AA, Prapulla SG. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci F. (2011) 10:2–16. 10.1111/j.1541-4337.2010.00135.x
Wei L, Yan T, Wu Y, Chen H, Zhang B. Optimization of alkaline extraction of hemicellulose from sweet sorghum bagasse and its direct application for the production of acidic xylooligosaccharides by bacillus subtilis strain MR44. PLoS ONE. (2018) 13:e0195616. 10.1371/journal.pone.019561629634785
Ding XM, Li DD, Bai SP, Wang JP, Zeng QF, Su ZW, et al. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens. Poult Sci. (2018) 97:874–81. 10.3382/ps/pex37229294100
Liu J, Cao S, Liu J, Xie Y, Zhang H. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs. Asian Austr J Anim Sci. (2018a) 31:1660–9. 10.5713/ajas.17.090829642680
Samanta A, Senani S, Kolte AP, Sridhar M, Sampath K, Jayapal N, et al. Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod Process. (2012) 90:466–74. 10.1016/j.fbp.2011.11.001
Bian J, Peng P, Peng F, Xiao X, Xu F, Sun et al. -C. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chem. (2014) 156:7–13. 10.1016/j.foodchem.2014.01.11224629931
Zhang H, Xu Y, Yu S. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresour Technol. (2017) 234:343–9. 10.1016/j.biortech.2017.02.09428340439
Zhang H, Zhou X, Xu Y, Yu S. Production of xylooligosaccharides from waste xylan, obtained from viscose fiber processing, by selective hydrolysis using concentrated acetic acid. J Wood Chem Technol. (2017) 37:1–9. 10.1080/02773813.2016.1214154
Samanta A, Chikkerur J, Roy S, Kolte A, Sridhar M, Dhali A, et al. Xylooligosaccharides production from tobacco stalk xylan using edible acid. Curr Sci. (2019) 117:1521–5. 10.18520/cs/v117/i9/1521-1525
Ying W, Xu Y, Zhang J. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. Bioresour Technol. (2021) 321:124472. 10.1016/j.biortech.2020.12447233307483
De Freitas C, Carmona E, Brienzo M. Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact Carbohydr Diet Fibre. (2019) 18:100184. 10.1016/j.bcdf.2019.100184
Jnawali P, Kumar V, Tanwar B, Hirdyani H, Gupta P. Enzymatic production of xylooligosaccharides from brown coconut husk treated with sodium hydroxide. Waste Biomass Valori. (2017) 9:1757–66. 10.1007/s12649-017-9963-4
Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res. (2000) 329:807–15. 10.1016/S0008-6215(00)00249-411125823
Arai T, Biely P, Uhliarikova I, Sato N, Makishima S, Mizuno M, et al. Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. J Biosci Bioeng. (2019) 127:222–30. 10.1016/j.jbiosc.2018.07.01630143337
Linares-Pasten JA, Aronsson A, Karlsson EN. Structural considerations on the use of endo-xylanases for the production of prebiotic xylooligosaccharides from biomass. Curr Protein Pept Sci. (2018) 19:48–67. 10.2174/138920371766616092315520927670134
Dilokpimol A, Nakai H, Gotfredsen CH, Appeldoorn M, Baumann MJ, Nakai N, et al. Enzymatic synthesis of beta-xylosyl-oligosaccharides by transxylosylation using two beta-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4. Carbohydr Res. (2011) 346:421–9. 10.1016/j.carres.2010.12.01021215963
Kurakake M, Fujii T, Yata M, Okazaki T, Komaki T. Characteristics of transxylosylation by β-xylosidase from aspergillus awamori K4. Biochim Biophys Acta. (2005) 1726:0–279. 10.1016/j.bbagen.2005.08.00916202538
Kim YW, Fox DT, Hekmat O, Kantner T, Mcintosh LP, Warren R, et al. Glycosynthase-based synthesis of xylo-oligosaccharides using an engineered retaining xylanase from cellulomonas fimi. Org Biomol Chem. (2006) 4:2025–20. 10.1039/b601667g16688347
Yang R, Xu S, Wang Z, Yang W. Aqueous extraction of corncob xylan and production of xylooligosaccharides. LWT Food Sci Technol. (2005) 38:677–82. 10.1016/j.lwt.2004.07.023
Liu X, Liu Y, Jiang Z, Liu H, Yang S, Yan Q. Biochemical characterization of a novel xylanase from paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs. Food Chem. (2018) 264:310–8. 10.1016/j.foodchem.2018.05.02329853381
Seesuriyachan P, Kawee-Ai A, Chaiyaso T. Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment. Bioresour Technol. (2017) 241:537–44. 10.1016/j.biortech.2017.05.19328601771
Boonchuay P, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P, Watanabe M, et al. An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour Technol. (2018) 256:399–407. 10.1016/j.biortech.2018.02.00429475148
Xue JL, Zhao S, Liang RM, Yin X, Jiang SX, Su LH, et al. A biotechnological process efficiently co-produces two high value-added products, glucose and xylooligosaccharides, from sugarcane bagasse. Bioresour Technol. (2016) 204:130–8. 10.1016/j.biortech.2015.12.08226773956
Reddy SS, Krishnan C. Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of bacillus subtilis KCX006 and their bifidogenic function. LWT Food Sci Technol. (2016) 65:237–45. 10.1016/j.lwt.2015.08.013
Zhou X, Zhao J, Zhang X, Xu Y. An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. Bioresour Technol. (2019) 289:121755. 10.1016/j.biortech.2019.12175531301946
Zhou X, Xu Y. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Bioresour Technol. (2019) 282:81–7. 10.1016/j.biortech.2019.02.12930852335
Faryar R, Linares-Pastén JA, Immerzeel P, Mamo G, Andersson M, Stålbrand H, et al. Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food Bioprod Process. (2015) 93:1–10. 10.1016/j.fbp.2014.11.004
Romero-Fernandez M, Moreno-Perez S, Martins De Oliveira S, Santamaria RI, Guisan JM, Rocha-Martin J. Preparation of a robust immobilized biocatalyst of beta-1,4-endoxylanase by surface coating with polymers for production of xylooligosaccharides from different xylan sources. N Biotechnol. (2018) 44:50–8. 10.1016/j.nbt.2018.04.00729704649
Huang C, Lai C, Wu X, Huang Y, He J, Huang C, et al. An integrated process to produce bio-ethanol and xylooligosaccharides rich in xylobiose and xylotriose from high ash content waste wheat straw. Bioresour Technol. (2017) 241:228–35. 10.1016/j.biortech.2017.05.10928570888
Sophonputtanaphoca S, Pridam C, Chinnak J, Nathong M, Juntipwong P. Production of non-digestible oligosaccharides as value-added by-products from rice straw. Agric Nat Resour. (2018) 52:169–75. 10.1016/j.anres.2018.06.013
Khat-Udomkiri N, Sivamaruthi BS, Sirilun S, Lailerd N, Peerajan S, Chaiyasut C. Optimization of alkaline pretreatment and enzymatic hydrolysis for the extraction of xylooligosaccharide from rice husk. AMB Express. (2018) 8:115. 10.1186/s13568-018-0645-930014174
Banerjee S, Patti AF, Ranganathan V, Arora A. Hemicellulose based biorefinery from pineapple peel waste: xylan extraction and its conversion into xylooligosaccharides. Food Bioprod Process. (2019) 117:38–50. 10.1016/j.fbp.2019.06.012
Palaniappan A, Balasubramaniam VG, Antony U. Prebiotic potential of xylooligosaccharides derived from finger millet seed coat. Food Biotechnol. (2017) 31:264–80. 10.1080/08905436.2017.1369433
Aachary AA. Prebiotics: specific colonic nutrients. In: Prapulla SG, editor. Bioactive Xylooligosaccharides From Corncob: Enzymatic Production and Applications (Thesis) submitted to Univ. Of Mysore. Mysore: Aacharya, A. A. (2009). p. 19.
Durack DT, Glauser MP. The inflammatory cytokines - new developments in the pathophysiology and treatment of septic shock - discussion. Drugs. (1996) 52:17. 10.2165/00003495-199600522-000048869831
Childs CE, Roytio H, Alhoniemi E, Fekete AA, Forssten SD, Hudjec N, et al. Xylo-oligosaccharides alone or in synbiotic combination with bifidobacterium animalis subsp. Lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr. (2014) 111:1945–56. 10.1017/S000711451300426124661576
Chen H, Chen Y, Chang H. Immunomodulatory effects of xylooligosaccharides[J]. Food Sci Technol Res. (2012) 18:195–9. 10.3136/fstr.18.195
Hansen CH, Frokiaer H, Christensen AG, Bergstrom A, Licht TR, Hansen AK, et al. Dietary xylooligosaccharide downregulates IFN-gamma the low-grade inflammatory cytokine IL-1beta systemically in mice. J Nutr. (2013) 143:533–40. 10.3945/jn.112.17236123427328
Lecerf J.-M., Dépeint F, Clerc E, Dugenet Y, Niamba CN, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr. (2012) 108:1847–58. 10.1017/S000711451100725222264499
Howe GR, Benito E, Castelleto R, Cornée J, Estève J, Gallagher RP, et al. Dietary intake of fiber decreased risk of cancers of the colon rectum: evidence from the combined analysis of 13 case-control studies. Jnci J Natl Cancer. (1992) 84:1887–96. 10.1093/jnci/84.24.18871334153
Ando H, Ohba H, Sakaki T, Takamine K, Kamino Y, Moriwaki S, et al. Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol In Vitro. (2004) 18:765–71. 10.1016/j.tiv.2004.03.01115465641
Maeda R, Ida T, Ihara H, Sakamoto T. Induction of apoptosis in MCF-7 cells by beta-1,3-xylooligosaccharides prepared from caulerpa lentillifera. Biosci Biotech Bioch. (2012) 76:1032–4. 10.1271/bbb.12001622738982
Aacharya AA, Gobinatha D, Srinivasanb K, Prapulla SG. Protective effect of xylooligosaccharides from corncob on 1,2-dimethylhydrazine induced colon cancer in rats[J]. Bioact Carbohydr Diet Fibre. (2015) 5:146–52. 10.1016/j.bcdf.2015.03.004
Yu X, Yin J, Li L, Luan C, Li S. Prebiotic potential of xylooligosaccharides derived from corn cobs their In Vitro antioxidant activity when combined with lactobacillus. J Microbiol Biotechnol. (2015) 25:1084–92. 10.4014/jmb.1501.0102225791856
Rashad MM, Mahmoud AE, Nooman MU, Mahmoud HA, Keshta AT. Production of antioxidant xylooligosaccharides from lignocellulosic materials using bacillus amyloliquifaciens NRRL B-14393 xylanase. J App Pharm Sci. (2016) 6:30–6. 10.7324/JAPS.2016.60606
Gowdhaman D, Ponnusami V. Production and optimization of xylooligosaccharides from corncob by bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int J Biol Macromol. (2015) 79:595–600. 10.1016/j.ijbiomac.2015.05.04626038103
Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. (2005) 53:1841–56. 10.1021/jf030723c15769103
Jagtap S, Deshmukh RA, Menon S, Das S. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour Technol. (2017) 245:283–8. 10.1016/j.biortech.2017.08.17428892703
Bouiche C, Boucherba N, Benallaoua S, Martinez J, Diaz P, Pastor FIJ, et al. Differential antioxidant activity of glucuronoxylooligosaccharides (UXOS) and arabinoxylooligosaccharides (AXOS) produced by two novel xylanases. Int J Biol Macromol. (2019) 155:1075–83. 10.1016/j.ijbiomac.2019.11.07331712139
Valls C, Pastor FJ, Vidal T, Roncero MB, Díaz P, Martínez J, et al. Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydr Polym. (2018) 194:43–50. 10.1016/j.carbpol.2018.04.02829801857
Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC. Xylooligosaccharides fructooligosaccharides affect the intestinal microbiota precancerous colonic lesion development in rats. J Nutr. (2004) 134:1523–8. 10.1093/jn/134.6.152315173423
Palframan RJ, Gibson GR, Rastall RA. Carbohydrate preferences of bifidobacterium species isolated from the human gut. Curr Issues Intest Microbiol. (2003) 4:71–5. PMID: 1450369114503691
Pan X, Wu T, Zhang L, Cai L, Song Z. Influence of oligosaccharides on the growth and tolerance capacity of lactobacilli to simulated stress environment. Lett Appl Microbiol. (2009) 48:362–7. 10.1111/j.1472-765X.2008.02539.x19187509
Ebersbach T, Andersen JB, Bergstr MA, Hutkins RW, Licht TR. Xylo-oligosaccharides inhibit pathogen adhesion to enterocytes in vitro. Res Microbiol. (2012) 163:22–7. 10.1016/j.resmic.2011.10.00322056968
Dotsenko G, Meyer AS, Canibe N, Thygesen A, Nielsen MK, Lange L. Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota. Biomass Convers Bior. (2017) 8:497–507. 10.1007/s13399-017-0298-y
Chen Y, Xie Y, Zhong R, Liu L, Lin C, Xiao L, et al. Effects of xylo-oligosaccharides on growth and gut microbiota as potential replacements for antibiotic in weaning piglets. Front Microbiol. (2021) 12:641172. 10.3389/fmicb.2021.64117233717037
Yin J, Li F, Kong X, Wen C, Guo Q, Zhang L, et al. Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food Funct. (2019) 10:2701–9. 10.1039/C8FO02485E31025998
Yuan L, Li W, Huo Q, Du C, Wang Z, Yi B, et al. Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens. PeerJ. (2018) 6:e4435. 10.7717/peerj.443529527412
Suo HQ, Lin L, Xu GH, Xiao L, Chen XG, Xia RR, et al. Effectiveness of dietary xylo-oligosaccharides for broilers fed a conventional corn-soybean meal diet. J Integr Agr. (2015) 14:2050–7. 10.1016/S2095-3119(15)61101-7
De Maesschalck C, Eeckhaut V, Maertens L, De Lange L, Marchal L, Nezer C, et al. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Appl Environ Microbiol. (2015) 81:5880–8. 10.1128/AEM.01616-1526092452
Li DD, Ding XM, Zhang KY, Bai SP, Wang JP, Zeng QF, et al. Effects of dietary xylooligosaccharides on the performance, egg quality, nutrient digestibility and plasma parameters of laying hens. Anim Feed Sci Tech. (2017) 225:20–6. 10.1016/j.anifeedsci.2016.12.010
Schokker D, Jansman AJ, Veninga G, De Bruin N, Vastenhouw SA, De Bree FM, et al. Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. BMC Genomics. (2017) 18:241. 10.1186/s12864-017-3625-628320307
Chen Y, Xie Y, Zhong R, Han H, Liu L, Chen L, et al. Effects of graded levels of xylo-oligosaccharides on growth performance, serum parameters, intestinal morphology and intestinal barrier function in weaned piglets. J Anim Sci. (2021) 99:skab183. 10.1093/jas/skab18334097723
Zhu LH, Zhao KL, Chen XL, Xu JX. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J Anim Sci. (2012) 90:2581–9. 10.2527/jas.2011-444422896732
Wang J, Cao Y, Wang C, Sun B. Wheat bran xylooligosaccharides improve blood lipid metabolism and antioxidant status in rats fed a high-fat diet. Carbohydr Polym. (2011) 86:1192–7. 10.1016/j.carbpol.2011.06.014
Guerreiro I, Couto A, Pérez-Jiménez A, Oliva-Teles A, Enes P. Gut morphology and hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed plant feedstuffs or fishmeal-based diets supplemented with short-chain fructo-oligosaccharides and xylo-oligosaccharides. Br J Nutr. (2015) 114:1975–84. 10.1017/S000711451500377326435350
Ebersbach T, Jorgensen JB, Heegaard PM, Lahtinen SJ, Ouwehand AC, Poulsen M, et al. Certain dietary carbohydrates promote Listeria infection in a guinea pig model, while others prevent it. Int J Food Microbiol. (2010) 140:218–24. 10.1016/j.ijfoodmicro.2010.03.03020417983
Pourabedin M, Guan L, Zhao X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome. (2015) 3:15. 10.1186/s40168-015-0079-425874109
Kravtsov E, Yermolayev A, Anokhina I, Yashina N, Chesnokova V, Dalin M. Adhesion characteristics of lactobacillus is a criterion of the probiotic choice. B Exp Biol Med. (2008) 145:232–4. 10.1007/s10517-008-0058-x19023977
Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol. (2007) 73:6526–33. 10.1128/AEM.00508-0717766450