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Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have

great prebiotic potential. XOS are the degraded products of xylan prepared via chemical,

physical or enzymatic degradation. They are mainly composed of xylose units linked

by β-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such

as excellent water solubility and high temperature resistance, but also have a variety

of functional biological activities including anti-inflammation, antioxidative, antitumor,

antimicrobial properties and so on. Numerous studies have revealed in the recent

decades that XOS can be applied to many food and feed products and exert their

nutritional benefits. XOS have also been demonstrated to reduce the occurrence of

human health-related diseases, improve the growth and resistance to diseases of

animals. These effects open a new perspective on XOS potential applications for human

consumption and animal production. Herein, this review aims to provide a general

overview of preparation methods for XOS, and will also discuss the current application

of XOS to human and animal health field.
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INTRODUCTION

During the few last decades, there is increasing interest in the use of nutraceuticals or functional
food additives for improving human health which has led to development of new food and
feed products during the last few decades (1). Many functional products, having prebiotic
characteristics, such as xylo-oligosaccharides (XOS), fructo-oligosaccharides (FOS), galacto-
oligosaccharides (GOS), chitooligosaccharides (COS), alginate-oligosaccharides (AOS) have been
extensively used as food and feed additives (2–6). Among these prebiotics, XOS are considered to
be very promising. XOS are the degraded products prepared by chemical, physical or enzymatic
degradation of xylan derived from biomass materials such as sugarcane residues, corn cobs, rice
straw, etc (7) (Figure 1). They are composed of xylose units linked by β-1, 4-xylosidic bonds, which
have a branched structure by the addition of different side groups (Moreira et al.). The degrees of
polymerization of XOS are usually 2–7 (Figure 2) and they are known as xylobiose, xylotriose, and
so on (8).
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FIGURE 1 | Schematic of XOS production from agricultural residues.

XOS have a high potential to be applied for human nutrition
due to its physicochemical properties such as low viscosity, high
water solubility, tolerance to high temperature and acidic pH
(9). Studies shown that XOS display a variety of pharmacological
activities, including anti-inflammation, antioxidative, antitumor,
antimicrobial properties. In addition, XOS have a potential
application in the animal husbandry (10, 11). This review aims
to summarize the methods of preparation of XOS and discuss the
application of XOS to human and animal health.

PREPARATION AND CHARACTERIZATION
OF XOS

The most widely used preparation methods of XOS are: (1)
chemical degradation methods (2) physical degradation methods
and (3) enzymatic degradation methods (Figure 3).

Chemical Process for the Production of
XOS
The chemical degradation process, especially the acid and the
alkaline hydrolysis methods, has been widely used for the mass
production of XOS in industry due to its advantages such as
simple operation and low production cost. Several studies have
been conducted on producing XOS with various inorganic acids
(12–16). Samanta et al. reported that the xylan from tobacco
stalks was hydrolysed by tartaric acid into XOS, mainly including
xylobiose and xylotriose, in addition to monomeric xylose (16).
XOS production can also be obtained from corn cob xylan
using weak sulphuric acid at 90◦C during 30min (12). The
production of XOS depends on both acid concentration and

hydrolysis time. A previous study showed that optimization of
XOS production from waste xylan optimized by an orthogonal
design of experiments, concluding a good extraction procedure
of 20min with 20% acetic acid at 140◦C. A maximum XOS
yield of more than 45.86% was obtained (14). Ying et al. studied
that the increment of sulfuric acid concentration promoted
the yield of xylooligosaccharides from hydrogen peroxide-acetic
acid-pretreated poplar from 0.69 to 20.45% (17). In addition,
Zhang et al. reported that acetic acid hydrolysis provided the
highest XOS yield, up to 45.91% compared to hydrochloric acid
and sulfuric acid pretreatment (15). It is widely known that the
alkali solution could degrade hemicelluloses. This destruction is
caused by the disruption of the hydrogen bonds with the alkaline
reagent (18). In order to enhance the xylan content recovery
from hemicellulose, use of appropriate alkaline concentration
and pretreatment parameters are the primary conditions (19).
For example, the use of higher concentration of alkali solution
(15%) for extracting pineapple peels led to maximum recovery
of hemicellulose. In the case of corn cobs, Samanta et al. also
documented that higher concentration of alkali produced greater
dissolution of hemicelluloses (12). However, these methods
caused corrosion of the equipment, thus limiting their use.

Physical Process for the Production of XOS
Production XOS products by physical degradation is relatively
simple and environmentally friendly compared to chemical
degradation. For example, XOS can be obtained from milled
aspen wood using a microwave oven, processing at 180◦C for
10min were and nextly subjected to fractionation to oligo-
and polysaccharides by size-exclusion chromatography. The
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FIGURE 2 | Chemical schematic structure of XOS with low degree of polymerization.

FIGURE 3 | Characterization of XOS preparation methods.

dispersion degree was smaller while the degradation effect was
better (20). The hydrothermal reactor can also be used to degrade
the xylan. Its fragments released from corn cob hemicellulose

are partially acetylated, which improves solubility of long xylo-
oligosaccharides by preventing molecular interactions between
the xylan and the main chains of the xylo-oligosaccharide
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TABLE 1 | Summary of XOS preparation and yields in the most recent studies.

Substrate Pretreatment Biocatalyst Yxylan/

biomass (%)

Yxos/

biomass (%)

Yxos/

xylan (%)

DP References

Corn cobs acetic acid pH 2.7, 150◦C, 30min 30.4% 13.97% 45.9% X2-X6 (14)

Dilute acid followed by 135◦C for

30min

Xylanase from Penicillium

corylophilum P-3-31

34.8% 23.6% 67.7% X2-X4 (26)

pH 6.5 and 60◦C Xylanase (PbXyn10A) 31.2% 23.4% 75% X2-X4 (27)

ultra-high pressure pretreatment Streptomyces

thermovulgaris TISTR1948

endoxylanase

33.4% 3.6% 10.7% X2-X4 (28)

190C, 13min GH10 xylanase 29.9% 14.8% 49.4% (21)

5% (w/v) KOH, 90◦C for 1 h 38.8% 11.5% 29.6% X2-X5 (29)

Sugarcane

Bagasse

Alkaline 10% (w/v) at room

temperature overnight

Endo-β-1,4-xylanase

rHlxyn11A

10.5% 6.0% 57.4% X2-X3 (30)

15% (w/v) aqueous ammonia β-xylosidase 28.40% 19.3% 68.0% X2-X4 (31)

0.24M dilute H2SO4 90C 31min 33.5% 9.7% 29% X2-X6 (13)

5% gluconic acid hydrolysis (w/v)

60min at 150◦C

Cellulase 26.5% 14.1% 53.2% X2-X6 (32)

10% acetic acid at 150◦C for 45min G. oxydans ATCC 621H 27.9% 10.9% 39.1% X2-X6 (33)

Wheat straw 2% NaOH at 80◦C for 90min The endoxylanase-variant

K80R

8.4% 3.3% 39.8% X2-X3 (34)

Hydrolysis at 50◦C and pH 5 for 5 h β-1,4-endoxylanase 44% X2-X3 (35)

180◦C 40min Endo-β-1-4-xylanase 73% 23% 31.5% X2-X3 (36)

Rice straw 2% w/w sulfuric acid, 100◦C, 0.5 h 65.3% 18.2% 27.8% (37)

Rice husk 12% w/v NaOH, 110–120◦C for

30min

β-1,4-xylanase 54.5% 9.5% 17.4% X2-X5 (38)

Pineapple peel 15% (w/v) alkali solution for 16 h at

45◦C, 50◦C, pH 5.0 and 15U enzyme

dose

Endo- 1, 4–Xylanase M1 23.5% 25.7% X2-X3 (39)

Finger millet seed

coat

Sodium acetate Xylanase of Thermomyces

lanuginosus

4.8% 3.4% 71.8% X2-X3 (40)

Tobacco stalk 8% KOH or NaOH 90◦C, 1M tartaric

acid

17.0% 6.1% 35.7% X1-X3 (16)

and also by preventing the binding of xylan to cellulose
(21). The purity of XOS products is relatively high from

physical degradation. However, there is limitation on the use

of this method for large-scale production of XOS due to

low yield.

Enzymatic Process for the Production of
XOS
The industrial process of XOS production from natural xylan-
rich agricultural residues involve enzymatic hydrolysis. As
compared to the acid and alkaline hydrolysis method, production
by the enzymatic degradation is relatively more economical,
quick, and eco-friendly. Furthermore, enzymatic hydrolysis
neither requires any special equipment nor produces undesirable
byproducts. Thus, the production of XOS by enzymatic means
was done from plant sources rich in xylan including corn
cobs, sugarcane bagasse, wheat bran, birch wood, oat spelt,
beech wood, natural grass, oil palm frond etc. These major
enzymes used include β-xylosidase, glycosynthases and endo-
xylanases, the latter being the key enzyme to produce XOS
from xylan. They are able to reduce monomeric xylose release

from the non-reducing ends of xylooligomers and xylobiose.
The endo-xylanases from families GH10, GH11, and GH30 act
specifically on the substituted and unsubstituted regions of xylan
chain (22). Other studies focused on the use of β-xylosidases
and glycosynthases for XOS production. β-xylosidases catalyze
subtrate hydrolysis by inversion or retaining mechanism and
are classified into six GH families: GH3, 30, 39, 43, 52, and
54. The β-xylosidases have been reported to produce longer β-
XOS from β-1, 4 linkages or synthesize novel XOS (23, 24). Kim
et al. documented that a glycosynthase derived from a retaining
xylanase could synthesize a great variety of XOS (25). Many
factors affect the yield of XOS from xylan such as the enzyme
activity, the raw material, and incubation conditions including
incubation pH, reaction time and temperature (19).

Table 1 summarizes the preparation process and the yields
of XOS produced from xylan and xylan biomass by different
approaches, often leading to high yields for several sources of
substrates. Importantly, the prebiotic action of XOS requires a
low degree of polymerization (DP) (9, 18). Hence, there are still
some parameters in the preparation process of XOS that need
to be optimized, including the production of a low DP (DP of
2–7) and the achievement of a high purity. Therefore, research
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FIGURE 4 | Potential health benefits of prebiotics [quoted from (41)].

focuses on the combination and integration of the processes,
testing different raw materials, extraction methods and enzymes
to achieve an economically viable and health promoting product
with an optimal production efficiency.

XOS APPLICATION TO HUMAN HEALTH

XOS were demonstrated to have various activities in human
health such as inducing immune modulation, anti-tumor,
antioxidant and anti-microbial effects (Figure 4).

Immune Modulation Effects of XOS
It is essential for protecting the host from diseases or repairing
tissue injury to release inflammatory mediators (42, 43), and XOS
is thus suggested to be an immunomodulator to prevent adverse
immune-related conditions. Indeed, XOS was shown to have
immunomodulatory effects by regulating expression of several
proinflammatory mediators in vitro. XOS not only suppressed
TNF-α, IL-1β, IL-6 and NO expression, but also triggered IL-10
production in lipopolysaccharide (LPS)-stimulated RAW264.7
cells (44). XOS feeding significantly decreased expression of
IL-1β and IFN-γ and attenuated systemic inflammation (45).

Moreover, the O-acetylated XOS derived from almond shells and
their deacetylated derivatives exhibited immunomodulatory
potential, based on a mitogenic rat thymocyte test
(46). Finally, XOS combined with inulin attenuated the
expression of IL-1β in the blood of healthy subjects fed a
high-fat diet (47). Schematic presentation of XOS health benefits
and their role in immune modulation are depicted in Figure 4.

Anti-tumor Effects of XOS
The main causes of cancer are the uncontrolled proliferation
of abnormal cells which may stay at the point of mutation or
metastasize into other locations. It has been shown that XOS
exposure showed effect in preventing cancer (48–50). Indeed,
β-1,3-Xylooligosaccharides with an average DP of 5 extracted
from green alga Caulerpa lentillifera inhibited the number of
viable human breast cancer MCF-7 cells in a dose-dependent
manner, and induced apoptosis (50). Thus, this XOS could be
a promising agent for prevention of breast cancer. Moreover,
XOS supplementation reduced the level of lipid peroxidation and
increased the activities of glutathione-S-transferase and catalase
in colonic mucosa and liver, which may have contributed to the
inhibition of colon carcinogenesis (51). In vitro approaches will
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be useful for future mechanistic characterization of the antitumor
properties of XOS. However, no systematic attempts have been
carried out to study the upstream signals of caspase activation
and the specific effects in vivo. Further research is necessary to
investigate the overall anti-tumor effect of XOS.

Antioxidant Effects of XOS
During both acute and chronic diseases in humans, the
abundance of free radicals usually increases. Several notable
studies demonstrated that XOS had exhibited strong antioxidant
and free radical scavenging activity, thus suggesting a potential
use in biomedical applications (52, 53). The scavenging ability of
XOS was shown to be dose-dependent (54), and this potential
is likely attributable to efficient release of phenolic compounds
and transfer of hydrogen atoms from the phenolic compounds
to free radicals (55). Jagtap et al. revealed that the percent of
antioxidant activity gradually increased reaching the maximum,
74% at a concentration of 6 mg/ml XOS using 1,1-diphenyl-
2-picryl-hydrazyl (DPPH) assay, after which it did not show
any further increase (56). Bouiche et al. studied that the
antioxidant activity of glucuronoxylooligosaccharides (UXOS)
and arabinoxylooligosaccharides (AXOS) was tested with the
2, 2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)
method (57). The results showed that the antioxidant activity
of UXOS was significantly higher than the antioxidant activity
of AXOS. Although both have neutral molecules, UXOS also
has methylglucuronic acid (MeGlcA) decorations that confer a
negative charge to the XOS. It was assumed that the MeGlcA
decorations of the XOS were key elements influencing their
antioxidant and radical scavenging activity of XOS (58).

Anti-microbial Effects of XOS
It has been reported that XOS have significant antimicrobial
effects against several pathogenic bacterial. A host of clinically
important both Gram-negative and Gram-positive bacteria have
been documented to be sensitive to XOS exposure. Indeed, XOS
and FOS supplementations markedly reduced the cecal pH level
and increased the population of bifidobacterial compared with
the control and DMH (1,2-dimethylhydrazine) treatments and
the XOS treatment group had a lower abundance of E. coli than
the DMH group. These results indicated that XOS and FOS non-
digestible carbohydrates may promote the health of intestinal
tract (59). In addition, some in vitro studies have documented
that XOS supplementation produced lactic acid and acetic acid,
which contributed to growth of bifidobacteria and lactobacilli
strains and inhibited the growth of pathogenic strains (60–63).

XOS APPLICATION TO ANIMAL HEALTH

In this section, the recent studies on the application of
XOS in animal husbandry health are provided. We have
noted that most of the studies were focusing on XOS
modulation of growth performance, nutrient digestibility and
intestinal morphology, immune and anti-oxidant activity and gut
microbiome (Figure 5).

Effects of XOS on Growth Performance of
Animals
XOS have been used for animal nutrition and health
improvement due to their potential biological functions,
such as antioxidant, anti-inflammatory and antimicrobial effects.
Previous studies have demonstrated the benefits of XOS on the
growth performance of animals. Liu et al. reported that XOS
treatment at a dose of 200 mg/kg increased average daily gain
(ADG) by 17% and gain to feed (G/F) by 14% in the whole
experiment, improved the apparent total tract digestibility
(ATTD) of dry matter (DM), N and gross energy (GE) during
0 to 14 d in the piglets (27). Our study found that the effects
of 500 mg/kg XOS (XOS500) on the growth performance
during 1–28 days were very similar with that of the antibiotic
chlortetracycline in the piglets. The results showed that XOS500
(500 mg/kg XOS) supplementation could significantly increase
body weight (BW), ADG, average daily feed intake (ADFI) and
feed to gain (F: G) of piglets (64). However, another study failed
to notice significant improvement on growth performance after
0.01% XOS treatment in pigs (65). The discrepancy might be
caused by the different levels of XOS used in these studies. Thus,
further studies are needed to confirm the optimal dose of XOS
in pigs. In addition, Yuan et.al evaluated the effects of XOS on
growth performance and immune function of broiler chickens.
They reported that XOS supplementation in the diet of broiler
chickens significantly improved ADFI and ADG at 1–42 days
when compared to the control group (66). The results of a study
by Pourabedin et al. demonstrated that the feed conversion ratio
(FCR) in broilers fed 2 g XOS/kg diet was lower than those fed
1 g XOS/kg diet between days 7 and 21, which is in line with
other studies (67, 68). Some other researchers found that the
FCR in the control group was also significantly lower for the
group receiving the XOS-supplemented diet in broiler chickens
for the whole trial period (67, 68). These results showed that
XOS may dose-dependently improve the growth performance of
animals and have potential as novel alternatives to antibiotics as
growth promoters.

Effects of XOS on Nutrient Digestibility and
Intestinal Morphology of Animals
The growth promoting effect of XOS has been shown to be
related to improvement in nutrient digestibility. The addition of
200 mg/kg XOS with a purity of 50% supplementation has been
demonstrated to improve the apparent total tract digestibility
(ATTD) of dry matter (DM), nitrogen (N), and gross energy (GE)
in weaning pigs on d14 (11). Similarly, the XOS supplementation
significantly increased the apparent digestibility of the calcium
with the increasing concentration of dietary XOS (0.1, 0.2,
0.3, 0.4 or 0.5 g/kg) in laying hens (69). The improvement of
nutrient digestibility may be the result from XOS supporting
normal intestinal morphology. Intestine morphology indices are
often as a useful criterion to estimate the nutrient digestion
and absorption capacity of the intestine. It is generally believed
that the jejunum is the main segment involved in absorption of
nutrients andminerals (70). Our study indicated that the XOS500
supplementation increased the villus height and villus height
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FIGURE 5 | Health beneficial effects of XOS.

to crypt depth ratio in the jejunum and ileum in comparison
with the CON and XOS1000 group in the piglets, possibly
improving nutrient absorption (71). Liu et al. confirmed that
the XOS increased villus height to crypt depth ratio in jejunum,
but did not influence villus height, crypt depth in the piglets
(27). Similarly, Ding et al. reported that there was a linear
improvement in villus height and villus height to crypt depth
ratio of the jejunum as dietary XOS concentration increased
in the laying hens (10). This is in agreement with the study
of Maesschalck et al. showing that supplementation of 0.5%
XOS with a purity of 35% to broiler chicken feed significantly
increased the villus height in the ileum, suggesting an increase
in gut health and improved nutrient absorption (68). However,
0.01% XOS with a purity of 40% in the diet of weaned piglets had
little effects on the intestinal structure and villus surface area (65).
In addition, the addition of 75mg/kg XOS with a purity of 35% in
the diet decreased the crypt depth of the duodenum (67). These
results indicated that the use of an appropriate level of XOS may
be important for increasing intestinal health and function.

Effects of XOS on Immune Modulation and
Anti-oxidant Activity of Animals
XOS have been reported to display significant anti-inflammatory
and anti-oxidant activities in animals in previous studies. In
pigs, Yin et al. reported that dietary XOS markedly reduced
serum IFN-γ concentration, indicating an anti-inflammatory
effect of XOS (65), which is in line with a study in broilers
showing a downregulation of the IFN-γ gene mRNA expression
of jejunal mucosa. In addition, an increase in plasma IgG
concentration was observed in XOS-fed 21-day-old broilers
(66). Furthermore, XOS increased plasma IgA, IL-2, and
TNF-α concentration compared with the control diet, and

linearly improved the IgA and TNF-α concentration in plasma
increasing the dietary XOS concentration in the laying hens
(10). These results indicated that dietary XOS may improve
cell-mediated immune response in early weaned piglets by
regulating the production of cytokines and antibodies. In
addition, antioxidant defense systems are regarded as important
serum indices for assessing animal health. The changes in the
antioxidant defense systems mainly including total antioxidant
capacity (T-AOC), total superoxide dismutase (T-SOD), catalase
(CAT) and glutathione peroxidase (GSH-Px) may indicate
oxidative stress (72). Several studies revealed that XOS had
exhibited antioxidant and radical scavenging competency (73).
However, the research of Guerreiro revealed that the XOS
supplementation reduced antioxidant enzyme activities in
European sea bass (74).

Effects of XOS on the Modulation of Gut
Microbiome of Animals
Our recent study showed that XOS500 supplementation
could significantly increase the relative abundance of
Lactobacillus genus and reduce the relative abundance
of Clostridium_sensu_stricto_1, Escherichia-Shigella, and
Terrisporobacter genus in the ileum and cecum in piglets
(64). Moreover, 200 mg/kg XOS administration decreased
fecal Escherichia coli and increased Lactobacilli in piglets
(11). However, dietary XOS reduced the relative abundance
of the Lactobacillus and increased the relative abundances
of Streptococcus and Turicibacter (65). Furthermore, XOS
and GOS both markedly decreased the numbers of intestinal
Listeria monocytogenes in ileal samples from guinea pigs, and
selectively stimulated bifidobacteria and lactobacilli, which
are believed to have inhibitory effects against pathogens (75).
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Similar beneficial effects of XOS have been observed in broilers.
Indeed, 2 g XOS/kg diet increased the relative abundance of
the Lactobacillus genus in the cecal microbiota of broilers (76),
that can adhere to the mucosa and epithelium, promoting
colonization, immunomodulation and protecting the intestinal
barrier against pathogens (77). Furthermore, by the production
of lactate, the lower the intestinal pH, inhibiting the growth of
acid-sensitive pathogenic bacteria (78). However, the specific
effect mechanism of XOS on the gut microbiome remains
unclear as several studies were only done (18–20) or by microbial
culture methods (21) that fail to provide accurate taxonomic
composition and community structure. Thus, extensive research
will be required to determine effects of XOS on the microbiome
in animals.

CONCLUSION

In this review paper, we have summarized the preparation
methods for XOS and its potential use as a functional
food or feed additive for human and animal health. XOS
seem to beneficially promoting intestinal health by selective
stimulation of growth of bifidobacteria and lactobacilli. XOS
also reduce the abundance of potentially pathogenic organisms.
In addition, XOS exhibit a variety of biological activities
including effects in suppressing inflammation, antioxidative,
antitumor and antimicrobial properties. However, there are
still several bottlenecks in the preparation and application
of XOS. It is still difficult to obtain XOS products in large

scale with high purity, and lack of consistency in quality
of different batches of XOS from different polymerization
degrees due to a lack of standardized preparation methods.
The XOS products in the market are mainly mixtures not
monomers. Technologies should be developed for producing
XOS monomers with high purity at low cost. In addition,
new investigations are required to further elucidate the specific
molecular mechanisms of XOS. Additional information is
needed on the mode of absorption of XOS in the host after
oral ingestion, and the identification of related receptors or
responsible for the transportation of XOS into target cells.
Progress in these areas may enhance the value of XOS for
applications in the prevention and treatment of human diseases
and animal production.
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