atlas; data-products; database; deoxygenation; mapping; observing; open and coastal ocean; oxygen; Oceanography; Global and Planetary Change; Aquatic Science; Water Science and Technology; Environmental Science (miscellaneous); Ocean Engineering
Abstract :
[en] In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Grégoire, Marilaure ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Garçon, Véronique; Laboratoire d’Études en Géophysique et Océanographie Spatiales, CNRS/IRD/UPS/CNES, Toulouse, France
Garcia, Hernan; National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Maryland, United States
Breitburg, Denise; Smithsonian Environmental Research Center, Edgewater, United States
Isensee, Kirsten; Intergovernmental Oceanographic Commission of UNESCO, Paris, France
Oschlies, Andreas; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Telszewski, Maciej; International Ocean Carbon Coordination Project, Institute of Oceanology of Polish Academy of Sciences, Sopot, Poland
Barth, Alexander ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Bittig, Henry C.; Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
Carstensen, Jacob; Department of Bioscience, Aarhus University, Roskilde, Denmark
Carval, Thierry; Coriolis, IFREMER, Brest, France
Chai, Fei; School of Marine Sciences, University of Maine, Orono, United States
Chavez, Francisco; Monterey Bay Aquarium Research Institute, Moss Landing, United States
Conley, Daniel; Department of Geology, Lund University, Lund, Sweden
Coppola, Laurent; CNRS, Laboratoire d’Océanographie de Villefranche, LOV, Sorbonne Université, Villefranche-sur-Mer, France
Crowe, Sean; Laboratory of Microbiology and Immunology, Life Sciences Centre, Vancouver, Canada
Currie, Kim; NIWA, Auckland, New Zealand
Dai, Minhan; Department of Oceanography, Xiamen University, Xiamen, China
Deflandre, Bruno; CNRS, EPOC, EPHE, UMR 5805, Université de Bordeaux, Bordeaux, France
Dewitte, Boris; Centro de Estudios Avanzado en Zonas Áridas, La Serena, Chile ; Departamento de Biología, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile ; Université de Toulouse, CERFACS/CNRS, Toulouse, France
Diaz, Robert; Department of Biological Sciences, University of Virginia, Virginia, United States
Garcia-Robledo, Emilio; Department of Biology, University of Cadiz, Cadiz, Spain
Gilbert, Denis; Maurice-Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Canada
Giorgetti, Alessandra; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy
Glud, Ronnie; Department of Biology, Danish Institute for Advanced Study, Odense, Denmark
Gutierrez, Dimitri; Dirección General de Investigaciones Oceanográficas y de Cambio Climático, Instituto del Perú, Callao, Peru
Hosoda, Shigeki; Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
Ishii, Masao; Department of Climate and Geochemistry, Meteorological Research Institute, Ibaraki, Japan
Jacinto, Gil; The Marine Science Institute, University of the Philippines, Quezon City, Philippines
Langdon, Chris; Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, United States
Lauvset, Siv K.; NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Levin, Lisa A.; Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
Limburg, Karin E.; State University of New York College of Environmental Science and Forestry, Syracuse, United States
Mehrtens, Hela; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Montes, Ivonne; Instituto Geofísico del Perú, Lima, Peru
Naqvi, Wajih; Council of Scientific and Industrial Research, New Delhi, India
Paulmier, Aurélien; Laboratoire d’Études en Géophysique et Océanographie Spatiales, CNRS/IRD/UPS/CNES, Toulouse, France
Pfeil, Benjamin; Geophysical Research, Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
Pitcher, Grant; Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
Pouliquen, Sylvie; Coriolis, IFREMER, Brest, France
Rabalais, Nancy; Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, United States
Rabouille, Christophe; Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
Recape, Virginie; Coriolis, IFREMER, Brest, France
Roman, Michaël; Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, United States
Rose, Kenneth; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
Rudnick, Daniel; Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
Rummer, Jodie; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
Schmechtig, Catherine; CNRS, Laboratoire d’Océanographie de Villefranche, LOV, Sorbonne Université, Villefranche-sur-Mer, France
Schmidtko, Sunke; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Seibel, Brad; College of Marine Science, University of South Florida, St. Petersburg, United States
Slomp, Caroline; Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
Sumalia, U. Rashid; Fisheries Economics Research Unit, University of British Columbia, Vancouver, Canada
Tanhua, Toste; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Thierry, Virginie; Ifremer, CNRS, IRD, LOPS, University of Brest, Plouzané, France
Uchida, Hiroshi; Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
Wanninkhof, Rik; Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, United States
Yasuhara, Moriaki; School of Biological Sciences, Division for Ecology and Biodiversity, Swire Institute of Marine Science, and State Key Laboratory of Marine Pollution, The University of Hong Kong, Hong Kong
All authors would like to thank IOC-UNESCO, International Ocean Carbon Coordination Project (IOCCP), NOAA, and the German SFB754. MG is funded by the Fonds National de la Recherche Scientifique (FRS-FNRS) and received fundings from the FNRS BENTHOX program grant T.1009.15, the Copernicus Marine Service (CMEMS), and the European Union’s Horizon 2020 BRIDGE-BS project under grant agreement No. 101000240. MG, VG, KI, and BDew are supported by the Project CE2COAST funded by ANR (FR), BELSPO (BE), FCT (PT), IZM (LV), MI (IE), MIUR (IT), Rannis (IS), and RCN (NO) through the 2019 “Joint Transnational Call on Next Generation Climate Science in Europe for Oceans” initiated by JPI Climate and JPI Oceans. MT, KC, and VG acknowledge support from the United States National Science Foundation grant OCE-1840868 to the Scientific Committee on Oceanic Research (SCOR, United States). BoD also acknowledges support from ANID grants R20F0008-CEAZA and 1190276. This research (through VG, AP and BoD) received fundings from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 869300 (FutureMARES). CB, AP, VG, LC, BrD, VR, VT, and CS acknowledge support of the French CES ODATIS Oxygen through INSU funding. SKL acknowledges support from the Research Council of Norway (Grant No. 269753). This manuscript is a contribution to the UN Decade Global Ocean Oxygen (GOOD) Program.All authors would like to thank IOC-UNESCO, International Ocean Carbon Coordination Project (IOCCP), NOAA, and the German SFB754. MG is funded by the Fonds National de la Recherche Scientifique (FRS-FNRS) and received fundings from the FNRS BENTHOX program grant T.1009.15, the Copernicus Marine Service (CMEMS), and the European Union?s Horizon 2020 BRIDGE-BS project under grant agreement No. 101000240. MG, VG, KI, and BDew are supported by the Project CE2COAST funded by ANR (FR), BELSPO (BE), FCT (PT), IZM (LV), MI (IE), MIUR (IT), Rannis (IS), and RCN (NO) through the 2019 ?Joint Transnational Call on Next Generation Climate Science in Europe for Oceans? initiated by JPI Climate and JPI Oceans. MT, KC, and VG acknowledge support from the United States National Science Foundation grant OCE-1840868 to the Scientific Committee on Oceanic Research (SCOR, United States). BoD also acknowledges support from ANID grants R20F0008-CEAZA and 1190276. This research (through VG, AP and BoD) received fundings from the European Union?s Horizon 2020 Research and Innovation Programme under grant agreement No. 869300 (FutureMARES). CB, AP, VG, LC, BrD, VR, VT, and CS acknowledge support of the French CES ODATIS Oxygen through INSU funding. SKL acknowledges support from the Research Council of Norway (Grant No. 269753). This manuscript is a contribution to the UN Decade Global Ocean Oxygen (GOOD) Program.
Adams K. A. Barth J. A. Shearman R. K. (2016). Intraseasonal cross-shelf variability of hypoxia along the newport, oregon, hydrographic line. J. Phys. Oceanogr. 46 2219–2238. 10.1175/JPO-D-15-0119.1
Altieri A. H. Harrison S. B. Seemann J. Collin R. Diaz R. J. Knowlton N. (2017). Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. 114 3660–3665. 10.1073/pnas.1621517114 28320966
Andersen J. H. Axe P. Backer H. Carstensen J. Claussen U. Fleming-Lehtinen V. et al. (2011). Getting the measure of eutrophication in the Baltic Sea: towards improved assessment principles and methods. Biogeochemistry 106 137–156. 10.1007/s10533-010-9508-4
Anderson O. F. Guinotte J. M. Rowden A. A. Clark M. R. Mormede S. Davies A. J. et al. (2016). Field validation of habitat suitability models for vulnerable marine ecosystems in the South Pacific Ocean: implications for the use of broad-scale models in fisheries management. Ocean Coast. Manag. 120 110–126. 10.1016/j.ocecoaman.2015.11.025
Andrews O. Buitenhuis E. Le Quéré C. Suntharalingam P. (2017). Biogeochemical modelling of dissolved oxygen in a changing ocean. Philos. Trans. Royal Soc. A 375:20160328. 10.1098/rsta.2016.0328 28784705
Aoyama M. (2020). Global certified-reference-material- or reference-material-scaled nutrient gridded dataset GND13. Earth Syst. Sci. Data 12, 487–449. 10.5194/essd-12-487-2020
Asch R. G. Cheung W. W. Reygondeau G. (2018). Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Mar. Pol. 88 285–294. 10.1016/j.marpol.2017.08.015
Attard K. M. Rodil I. F. Glud R. Berg P. Norkko J. Norkko A. (2019). Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance. Limnol. Oceanogr. Lett. 4 79–86. 10.1002/lol2.10107
Bailleul F. Vacquie-Garcia J. Guinet C. (2015). Dissolved oxygen sensor in animal-borne instruments: An innovation for monitoring the health of oceans and investigating the functioning of marine ecosystems. PLoS One 10:e0132681. 10.1371/journal.pone.0132681 26200780
Barnes S. L. (1964). A technique for maximizing details in numerical weather map analysis. J. App. Meteor. 3 396–409. 10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
Barth A. Alvera-Azcárate A. Licer M. Beckers J.-M. (2020). DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geosci. Model. Dev. 13 1609–1622. 10.5194/gmd-13-1609-2020
Barth A. Beckers J.-M. Troupin C. Alvera-Azcárate A. Vandenbulcke L. (2014). Divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci. Mod. Dev. 7 225–241. 10.5194/gmd-7-225-2014
Batiuk R. A. Breitburg D. L. Diaz R. J. Cronin T. M. Secor D. H. Thursby G. (2009). Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries. J. Exper. Mar. Biol. Ecol. 381 S204–S215. 10.1016/j.jembe.2009.07.023
Beaty T. Heinze C. Hughlett T. Winguth A. M. (2017). Response of export production and dissolved oxygen concentrations in oxygen minimum zones to pCO2 and temperature stabilization scenarios in the biogeochemical model HAMOCC 2.0. Biogeosciences 14 781–797. 10.5194/bg-14-781-2017
Becker M. Olsen A. Reverdin G. (2021). In-air one-point calibration of oxygen optodes in underway systems. Limnol. Oceanogr. Methods 19 293–302. 10.1002/lom3.10423
Berelson W. McManus J. Severmann S. Rollin N. (2019). Benthic fluxes from hypoxia-influenced Gulf of Mexico sediments: Impact on bottom water acidification. Mar. Chem. 209 94–106. 10.1016/j.marchem.2019.01.004
Berg P. Hüttel M. (2008). Monitoring the seafloor using the non-invasive Eddy Correlation technique: Integrated benthic exchange dynamics. Oceanography 21 164–167. 10.5670/oceanog.2008.13
Berg P. Glud R. N. Hume A. Stahl H. Oguri K. Meyer V. et al. (2009). Eddy correlation measurements of oxygen uptake in deep ocean sediments. Limnol. Oceanogr. 7 576–584. 10.4319/lom.2009.7.576
Bianchi D. Dunne J. P. Sarmiento J. L. Galbraith E. D. (2012). Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Glob. Biogeochem. Cycles 26:2009. 10.1029/2011GB004209
Bittig H. C. Körtzinger A. (2015). Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference. J. Atmos. Ocean. Technol. 32 1536–1543. 10.1175/JTECH-D-14-00162.1
Bittig H. C. Körtzinger A. (2017). Technical note: Update on response times, in-air measurements, and in situ drift for oxygen optodes on profiling platforms. Ocean Sci. 13 1–11. 10.5194/os-13-1-2017
Bittig H. C. Körtzinger A. Neill C. van Ooijen E. Plant J. N. Hahn J. et al. (2018). Oxygen optode sensors: principle, characterization, calibration, and application in the ocean. Front. Mar. Sci. 4:429. 10.3389/fmars.2017.00429
Bittig H. Fiedler B. Scholz R. Krahmann G. Körtzinger A. (2014). Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature. Limnol. Oceanogr. Methods 12 617–636. 10.4319/lom.2014.12.617
Bittig H. Fiedler B. Steinhoff T. Körtzonger A. (2012). A novel electrochemical calibration setup for oxygen sensors and its use for the stability assessment of Aanderaa optodes. Limnol. Oceanogr. Methods 10 921–933. 10.4319/lom.2012.10.921
Bittig H. Körtzinger A. Johnson K. Claustre H. Emerson S. Fennel K. et al. (2015). SCOR WG 142: Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders. Recommendation for Oxygen Measurements From Argo Floats, Implementation of In-Air-Measurement Routine to Assure Highest Long-Term Accuracy. Plouzane, France: IFREMER.
Bittig H. Maurer T. Plant J. Schmechtig C. Wong A. Claustre H. et al. (2019). A BGC-argo guide: planning, deployment, data handling and usage. Front. Mar. Sci. 6:502. 10.3389/fmars.2019.00502
Boyer T. P. Baranova O. K. Coleman C. Garcia H. E. Grodsky A. Locarnini R. A. et al. (2018). “World ocean database 2018,” in NOAA Atlas NESDIS, ed. Mishonov A. V. (Silver Spring, MD: NOAA), 87.
Bopp L. Resplandy L. Orr J. C. Doney S. C. Dunne J. P. Gehlen M. et al. (2013). Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245.
Brasseur P. Gruber N. Barciela R. Brander K. Doron M. Elmoussaoui A. et al. (2009). Integrating biogeochemistry and ecology into ocean data assimilation systems. Oceanography 22 206–215. 10.5670/oceanog.2009.80
Breitburg D. (2002). Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25 767–781. 10.1007/BF02804904
Breitburg D. L. Craig J. K. Fulford R. S. Rose K. A. Boynton W. R. Brady D. C. et al. (2009). Nutrient enrichment and fisheries exploitation: interactive effects on estuarine living resources and their management. Hydrobiologia 629 31–47. 10.1007/s10750-009-9762-4
Breitburg D. Levin L. A. Oschlies A. Grégoire M. Chavez F. P. Conley D. J. et al. (2018). Declining oxygen in the global ocean and coastal waters. Science 359:6371. 10.1126/science.aam7240 29301986
Broenkow W. W. Cline J. D. (1969). Colorimetric determination of dissolved oxygen at low concentrations. Limnol. Oceanogr. 4 450–454. 10.4319/lo.1969.14.3.0450
Bushinsky S. Emerson S. Riser S. Swift D. (2016). Accurate oxygen measurements on modified Argo floats using in situ air calibrations. Limnol. Oceanogr. Methods 14 491–505. 10.1002/lom3.10107
Cai W.-J. Sayles F. (1996). Oxygen penetration depths and fluxes in marine sediments. Mar. Chem. 52, 123–131.
Carpenter J. H. (1965). The accuracy of the winkler method for dissolved oxygen analysis. Limnol. Oceanogr. 10 135–140. 10.4319/lo.1965.10.1.0135
CARS (2009). CSIRO Atlas of Regional Seas – World Monthly. Battery Point, TAS: Integrated Marine Observing System.
Carstensen J. Conley D. J. (2019). Baltic Sea hypoxia takes many shapes and sizes. Bul. Limnol. Oceanogr. 28 125–129. 10.1002/lob.10350
Carstensen J. Andersen J. H. Gustafsson B. G. Conley D. J. (2014). Deoxygenation of the Baltic Sea during the last century. Proc. Natl. Acad. Sci. 111 5628–5633. 10.1073/pnas.1323156111 24706804
Cathalot C. Rabouille C. Pastor L. Deflandre B. Viollier E. Buscail R. et al. (2010). Temporal variability of carbon recycling in coastal sediments influenced by rivers: assessing the impact of flood inputs in the Rhone River prodelta. Biogeosciences 7 1187–1205. 10.5194/bg-7-1187-2010
Champenois W. Borges A. (2019). Inter-annual variations over a decade of primary production of the seagrass Posidonia oceanica. Limnol. Oceanogr. 64 32–45. 10.1002/lno.11017
Chance R. Baker A. R. Carpenter L. Jickells T. (2014). The distribution of iodide at the sea surface. Environ. Sci. Process Impacts 16 1841–1859. 10.1039/C4EM00139G 24964735
Cheung W. W. L. (2018). The future of fishes and fisheries in the changing oceans. J. Fish Biol. 92 790–803. 10.1111/jfb.13558 29537084
Chu J. W. Gale K. S. (2017). Ecophysiological limits to aerobic metabolism in hypoxia determine epibenthic distributions and energy sequestration in the northeast Pacific Ocean. Limnol. Oceanogr. 62 59–74. 10.1002/lno.10370
Clark L. C. Jr. Wolf R. Granger D. Taylor Z. (1953). Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol. 6 189–193. 10.1152/jappl.1953.6.3.189 13096460
Claustre H. Johnson K. S. Takeshita Y. (2020). Observing the global ocean with biogeochemical-Argo. Annu. Rev. Mar. Sci. 12 23–48. 10.1146/annurev-marine-010419-010956 31433959
Coffey D. M. Holland K. N. (2015). First autonomous recording of in situ dissolved oxygen from free-ranging fish. Anim. Biotelem. 3 47. 10.1186/s40317-015-0088-x
Conley D. J. Carstensen J. Vaquer-Sunyer R. Duarte C. M. (2009). Ecosystem thresholds with hypoxia. Hydrobiologica 629 21–29. 10.1007/s10750-009-9764-2
Coppola L. Ntoumas M. Bozzano R. Bensi M. Hartman S. E. Charcos Llorens M. et al. (2016). Handbook of Best Practices for Open Ocean Fixed Observatories. Report of the FixO3 Project. Brussels, Belgium: European Commission, 127.
Coppola L. Prieur L. Taupier-Letage I. Estournel C. Testor P. Lefevre D. et al. (2017). Observation of oxygen ventilation into deep waters through targeted deployment of multiple Argo-O2 floats in the north- western Mediterranean Sea in 2013. J. Geophys. Res. Oceans 122 6325–6341. 2016JC012594 10.1002/2016JC012594
de Mutsert K. Steenbeek J. Cowan J. H. Christensen V. (2017). “Using ecosystem modeling to determine hypoxia effects on fish and fisheries,” in Modeling Coastal Hypoxia, eds Dubravko J. Rose K. Hetland R. Fennel K. (Cham: Springer), 377–400. 10.1007/978-3-319-54571-4_14
Desbruyères D. G. Purkey S. G. McDonagh E. L. Johnson G. C. King B. A. (2016). Deep and abyssal ocean warming from 35 years of repeat hydrography. Geo. Phys. Res. Lett. 43 10356–10365. 10.1002/2016GL070413
Deutsch C. Penn J. L. Seibel B. (2020). Metabolic trait diversity shapes marine biogeography. Nature 585 557–562. 10.1038/s41586-020-2721-y 32939093
Diaz R. J. Rosenberg R. (2008). Spreading dead zones and consequences for marine ecosystems. Science 321 926–929. 10.1126/science.1156401 18703733
Dickey T. D. (2003). Emerging ocean observations for interdisciplinary data assimilation systems. J. Mar. Syst. 40 5–48. 10.1016/S0924-7963(03)00011-3
Druon J. N. Chassot E. Murua H. Lopez J. (2017). Skipjack tuna availability for purse seine fisheries is driven by suitable feeding habitat dynamics in the Atlantic and Indian Oceans. Front. Mar. Sci. 4:315. 10.3389/fmars.2017.00315
Dulvy N. Reynolds J. D. Pilling G. M. Pinnegar J. K. Scutt Phillips J. Allison E. H. et al. (2011). Fisheries management and governance challenges in a climate change, in The Economics of Adapting Fisheries to Climate Change. Paris: OECD Publishing, 31–88. 10.1787/9789264090415-4-en
Duteil O. Oschlies A. Böning C. W. (2018). Pacific Decadal Oscillation and recent oxygen decline in the eastern tropical Pacific Ocean. Biogeosciences 15 7111–7126. 10.5194/bg-15-7111-2018
Dyck A. J. Sumaila U. R. (2010). Economic impact of ocean fish populations in the global fishery. J. Bioecon. 12 227–243. 10.1007/s10818-010-9088-3
Eero M. Hjelm J. Behrens J. Buchmann K. Cardinale M. Casini M. et al. (2015). Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES J. Mar. Sci. 72 2180–2186. 10.1093/icesjms/fsv109
Emerson S. Quay P. Karl D. M. Winn C. Tupas L. M. (1997). Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389 951–954. 10.1038/40111
Emerson S. Stump C. Nicholson D. (2008). Net biological oxygen production in the ocean: Remote in situ measurements of O2 and N2 in surface waters. Glob. Biogeochem. Cycles 22:GB3023. 10.1029/2007GB003095
Evans N. Schroeder I. D. Pozo Buil M. Jacox M. G. Bograd S. J. (2020). Drivers of subsurface deoxygenation in the southern California Current System. Geophys. Res. Lett. 46:e2020GL089274. 10.1029/2020GL089274
Fennel K. Testa J. M. (2019). Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11 105–130. 10.1146/annurev-marine-010318-095138 29889612
Gallo N. Wei C.-L. Levin L. Kuhnz L. Barry J. (2020). Dissolved oxygen and temperature best predict deep-sea fish community structure in the Gulf of California with implications for climate change. Mar. Ecol. Prog. Ser. 637 159–180. 10.3354/meps13240
Gammal J. Norkko J. Pilditch C. A. Norkko A. (2017). Coastal hypoxia and the importance of benthic macrofauna communities for ecosystem functioning. Estuaries Coasts 40 457–468. 10.1007/s12237-016-0152-7
Garcia H. E. Boyer T. P. Levitus S. Locarnini R. A. Antonov J. (2005). On the variability of dissolved oxygen and apparent oxygen utilization content for the upper world ocean: 1955 to 1998. Geophys. Res. Lett. 32:L09604. 10.1029/2004GL022286
Garcia H. E. Locarnini R. A. Boyer T. P. Antonov J. I. Baranova O. K. Zweng M. M. et al. (2013). “World ocean atlas 2013, volume 3: dissolved oxygen, apparent oxygen utilization, and oxygen saturation,” in NOAA Atlas NESDIS, Vol. 75, eds Levitus S. Mishonov A. (Silver Spring, MD: NOAA).
Garcia H. E. Weathers K. Paver C. R. Smolyar I. Boyer T. Locarnini R. et al. (2019). “World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation,” in NOAA Atlas NESDIS, Vol. 83 ed. Mishonov A. (Silver Spring, MD: NOAA).
Garcia-Robledo E. Paulmier A. Borisov S. M. Revsbech N. P. (2021). Sampling in low oxygen aquatic environments: The deviation from anoxic conditions. Limnol. Oceanogr. Methods 2021:10457. 10.1002/lom3.10457
Garçon V. C. Karstensen J. Palacz A. Telszewski M. Aparco Lara T. Breitburg D. et al. (2019). Multidisciplinary observing in the World Ocean’s oxygen minimum zone regions: from climate to fish-the VOICE initiative. Front. Mar. Sci. 6:722. 10.3389/fmars.2019.00722
Gharamti M. E. Tjiputra J. Bethke I. Samuelsen A. Skjelvan I. Bentsen M. et al. (2017). Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites. Ocean Model. 112 65–89. 10.1016/j.ocemod.2017.02.006
Gilbert D. Rabalais N. N. Diaz R. J. Zhang J. (2010). Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7:2283. 10.5194/bg-7-2283-2010
Giorgetti A. E. Partescano E. Barth A. Buga L. Gatti J. Giorgi G. et al. (2018). EMODnet chemistry spatial data infrastructure for marine observations and related information. Ocean Coast. Manag. 166 9–17. 10.1016/j.ocecoaman.2018.03.016
Glud R. N. (2008). Oxygen dynamics of marine sediments. Mar. Biol. Res. 4 243–289. 10.1080/17451000801888726
Glud R. N. Gundersen J. K. Ramsing N. B. Buffle J. Horvai G. (2000). Electrochemical and optical oxygen microsensors for in situ measurements: In situ monitoring of aquatic systems: Chemical analysis and speciation. Chichester, UK: John Wiley and Sons, 20–73.
Gobler C. J. Baumann H. (2016). Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett. 12:20150976. 10.1098/rsbl.2015.0976 27146441
Gordon C. Fennel K. Richards C. Shay L. K. Brewster J. K. (2020). Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats? Biogeosciences 17 4119–4134. 10.5194/bg-17-4119-2020
Gruber N. Doney S. C. Emerson S. R. Gilbert D. Kobayashi T. Körtzinger A. et al. (2010). “Adding oxygen to argo: Developing a global in situ observatory for ocean deoxygenation and biogeochemistry,” in Proceedings of Ocean Obs ‘09: Sustained Ocean Observations and Information for Society, eds Hall J. Harrison D. E. Stammer D. (New Zealand: ESA Publication), 12. 10.5270/OceanObs09.cwp.39
Gust G. Booij K. Helder W. Sundby B. (1987). On the velocity sensitivity (stirring effect) of polarographic oxygen microelectrodes. Neth. J. Sea Res. 21 255–263. 10.1016/0077-7579(87)90001-9
Hagy J. Boynton W. Keefe C. Wood K. (2004). Hypoxia in Chesapeake Bay, 1950-2001: Long-term change in relation to Nutrient loading and river flow. Estuaries 27 634–658. 10.1007/BF02907650
Hall P. O. J. Almroth-Rosell E. Bonaglia S. Dale A. W. Hylen A. Kononets M. et al. (2017). Influence of natural oxygenation of baltic proper deep water on benthic recycling and removal of phosphorus, nitrogen, silicon and carbon. Front. Mar. Sci. 4:27. 10.3389/fmars.2017.00027
Helly J. Levin L. A. (2004). Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. 51 1159–1168. 10.1016/j.dsr.2004.03.009
Holtappels M. Kuypers M. M. M. Schlüter M. Brüchert V. (2011). Measurement and interpretation of solute concentration gradients in the benthic boundary layer. Limnol. Oceanogr. Meth. 9 1–13. 10.4319/lom.2011.9.1
Hood E. M. Sabine C. L. Sloyan B. M. (eds) (2010). The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines, Version 1. (IOCCP Report 14), (ICPO Publication Series 134). Available online at: http://www.go-ship.org/HydroMan.html. 10.25607/OBP-1341
Howard E. M. Penn J. L. Frenzel H. Seibel B. A. Bianchi D. Renault L. et al. (2020). Climate-driven aerobic habitat loss in the California Current System. Sci. Adv. 6:eaay3188. 10.1126/sciadv.aay3188 32440538
Hughes D. J. Alderdice R. Cooney C. Kühl M. Pernice M. Voolstra C. R. et al. (2020). Coral reef survival under accelerating ocean deoxygenation. Nat. Climate Change 10 296–307. 10.1038/s41558-020-0737-9
IOC (2019). The Science We Need for the Ocean We Want: The United Nations Decade of Ocean Science for Sustainable Development (2021-2030). Paris: IOC, 24.
Jahnke R. A. (1996). The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10 71–88. 10.1029/95GB03525
Jahnke R. A. Christiansen M. B. (1989). A free vehicle benthic chamber instrument for sea floor studies. Deep-sea Res. 32 885–897. 10.1016/0198-0149(89)90011-3
Johnson K. S. Claustre H. (2016). Bringing Biogeochemistry Into the Argo age. Washington, DC: EOS, 97. 10.1029/2016EO062427
Johnson K. S. Plant J. N. Riser S. C. Gilbert D. (2015). Air oxygen calibration of oxygen optodes on a profiling float array. J. Atmos. Ocean. Technol. 32 2160–2172. 10.1175/JTECH-D-15-0101.1
Johnson K. S. Plant J. Coletti L. Jannasch H. Sakamoto C. Riser S. et al. (2017). Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res. Oceans 122 6416–6436. 10.1002/2017JC012838
Joyce T. M. (1991). Introduction to the Collection of Expert Reports Compiled for the WHP Programme. WHP Operations and Methods—July 1991. Southampton: WOCE Hydrographic Programme Office, 4.
Keeling R. F. Manning A. C. (2014). Studies of Recent Changes in Atmospheric O2 Content. Treatise on Geochemistry, Second Edn, Vol. 5. Amsterdam: Elsevier, 385–404. 10.1016/B978-0-08-095975-7.00420-4
Keeling R. Körtzinger A. Gruber N. (2010). Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2 199–229. 10.1146/annurev.marine.010908.163855 21141663
Keister J. E. Houde E. D. Breitburg D. L. (2000). Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Mar. Ecol. Prog. Ser. 205 43–59. 10.3354/meps205043
Keller A. A. Ciannelli L. Wakefield W. W. Simon V. Barth J. A. Pierce S. D. (2017). Species-specific responses of demersal fishes to near-bottom oxygen levels within the California Current large marine ecosystem. Mar. Ecol. Prog. Ser. 568 151–173. 10.3354/meps12066
Kemp W. M. Testa J. M. Conley D. J. Gilbert D. Hagy J. D. (2009). Coastal hypoxia responses to remediation. Biogeosciences 6 2985–3008. 10.5194/bg-6-2985-2009
Key R. M. Kozyr A. Sabine C. L. Lee K. Wanninkhof R. Bullister J. L. et al. (2004). A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18 1–23. 10.1029/2004GB002247
Körtzinger A. Schimanski J. Send U. Wallace D. (2004). The ocean takes a deep breath. Science 306:1337. 10.1126/science.1102557 15550662
Krasnopolsky V. Nadiga S. Mehra A. Bayler E. Behringer D. (2016). Neural networks technique for filling gaps in satellite measurements: application to ocean color observations. Comput. Intel. Neurosci. 2016:6156513. 10.1155/2016/6156513 26819586
Kriest I. Sauerland V. Khatiwala S. Srivastav A. Oschlies A. (2017). Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0). Geosci. Model Dev. 10 127–154. 10.5194/gmd-10-127-2017
Labasque T. Chaumery C. Aminot A. Kergoat G. (2004). Spectrophotometric winkler determination of dissolved oxygen: Re-examination of critical factors and reliability. Mar. Chem. 88 53–60. 10.1016/j.marchem.2004.03.004
Laffoley D. Baxter J. M. (2019). Ocean Deoxygenation: Everyone’s Problem - Causes, Impacts, Consequences and Solutions. Gland, Switzerland: IUCN, 580. 10.2305/IUCN.CH.2019.13.en 32055894
Lakowicz J. (2006). Principles of Fluorescence Spectroscopy, 3rd Edn. Amsterdam: Elsevier, 954. 10.1007/978-0-387-46312-4
Langdon C. (2010). “Determination of dissolved oxygen in seaweater by Winkler titration using Amperometric Technique,” in The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. Version 1 (IOCCP Report Number 14; ICPO Publication Series Number 134), eds Hood E. M. Sabine C. L. Sloyan B. M. (Lyon: ICPO), 18. 10.25607/OBP-1350
Lauvset S. K. Tanhua T. (2015). A toolbox for secondary quality control on ocean chemistry and hydrographic data. Limnol. Oceanogr. Meth. 13 601–608. 10.1002/lom3.10050
Lauvset S. K. Key R. M. Olsen A. van Heuven S. Velo A. Lin X. et al. (2016). A new global interior ocean mapped climatology: the 1°x1° GLODAP version 2. Earth Syst. Sci. Data 8 325–340. 10.5194/essd-8-325-2016
Le Traon P. Y. Reppucci A. Fanjul E. A. Aouf L. Behrens A. Belmonte M. et al. (2019). From observation to information and users: The copernicus marine service perspective. Front. Mar. Sci. 6:234. 10.3389/fmars.2019.00234
Lehner P. Larndorfer C. Garcia-Robledo E. Larsen M. Borisov S. M. Revsbech N. P. et al. (2015). Lumos - a sensitive and reliable optode system for measuring dissolved oxygen in the nanomolar range. PLoS One 10:e0128125. 10.1371/journal.pone.0128125 26029920
Lemburg J. Wenzhöfer F. Hofbauer M. Färber P. Meyer V. (2018). “Benthic crawler NOMAD,” in Proceedings of the 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, 1–7. 10.1109/OCEANSKOBE.2018.8559446
Levin L. A. (2003). Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanogr. Mar. Biol. 41 1–45.
Levin L. A. (2018). Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10 229–260. 10.1146/annurev-marine-121916-063359 28961073
Levin L. A. Ekau W. Gooday A. J. Jorissen F. Middelburg J. J. Naqvi S. W. A. et al. (2009). Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6 2063–2098. 10.5194/bg-6-2063-2009
Levin L. A. Wei C. L. Dunn D. C. Amon D. Ashford O. Cheung W. et al. (2020). Climate change considerations are fundamental to management of deep-sea resource extraction. Glob. Change Biol. 26 4664–4678. 10.1111/gcb.15223 32531093
Li P. Tanhua T. (2020). Recent changes in deep ventilation of the mediterranean sea; evidence from long-term transient tracer observations. Front. Mar. Sci. 7:594. 10.3389/fmars.2020.00594
Limburg K. E. Casini M. (2018). Effect of marine hypoxia on Baltic Sea cod Gadus morhua: evidence from otolith chemical proxies. Front. Mar. Sci. 5:482. 10.3389/fmars.2018.00482
Limburg K. E. Casini M. (2019). Otolith chemistry indicates recent worsened Baltic cod condition is linked to hypoxia exposure. Biol. Lett. 15:20190352. 10.1098/rsbl.2019.0352 31822246
Limburg K. E. Breitburg D. Swaney D. Jacinto G. (2020). Ocean deoxygenation: a primer. One Earth 2 24–29. 10.1016/j.oneear.2020.01.001
Long M. C. Deutsch C. Ito T. (2016). Finding forced trends in oceanic oxygen. Glob. Biogeochem. Cycles 30 381–397. 10.1002/2015GB005310
Lu Y. Yuan J. Lu X. Su C. Zhang Y. Wang C. et al. (2018). Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environ. Pollut. 239 670–680. 10.1016/j.envpol.2018.04.016 29709838
Martín Míguez B. Novellino A. Vinci M. Claus S. van Calewaert J.-B. Vallius H. et al. (2019). The European Marine Observation and Data Network (EMODnet): visions and roles of the gateway to marine data in Europe. Front. Mar. Sci. 6:313. 10.3389/fmars.2019.00313
Mavropoulou A. M. Vervatis V. Sofianos S. (2020). Dissolved oxygen variability in the Mediterranean Sea. J. Mar. Syst. 2020:103348. 10.1016/j.jmarsys.2020.103348
Montes I. Dewitte B. Gutknecht E. Paulmier A. Dadou I. Oschlies A. et al. (2014). High-resolution modeling of the eastern Tropical Pacific oxygen minimum zone: Sensitivity to the tropical oceanic circulation. J. Geophys. Res. Oceans 119 5515–5532. 10.1002/2014JC009858
Neilan R. M. Rose K. (2014). Simulating the effects of fluctuating dissolved oxygen on growth, reproduction, and survival of fish and shrimp. J. Theor. Bio. 343 54–68. 10.1016/j.jtbi.2013.11.004 24269807
Nicholson D. P. Feen M. L. (2017). Air calibration of an oxygen optode on an underwater glider. Limnol. Oceanogr. Meth. 15 495–502. 10.1002/lom3.10177
Nicholson D. Emerson S. Eriksen C. C. (2008). Net community production in the deep euphotic zone of the subtropical North Pacific gyre from glider surveys. Limnol. Oceanogr. 53 2226–2236. 10.4319/lo.2008.53.5_part_2.2226
Noone K. J. Sumaila U. R. Diaz R. J. (2013). Managing Ocean Environments in a Changing Climate: Sustainability and Economic Perspectives. London, UK: Elsevier, 359.
Ohman M. D. Rudnick D. L. Chekalyuk A. Davis R. E. Feely R. A. Kahru M. et al. (2013). Autonomous ocean measurements in the California current ecosystem. Oceanography 26 18–25. 10.5670/oceanog.2013.41
Olsen A. Key R. M. van Heuven S. Lauvset S. K. Velo A. Lin X. et al. (2016). The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8 297–323. 10.5194/essd-8-297-2016
Olsen A. Lange N. Key R. M. Tanhua T. Bittig H. Kozyr A. (2020). GLODAPv2.2020 – the second update of GLODAPv2. Earth Syst. Sci. Data 2020:165. 10.5194/essd-2020-165
Oschlies A. (2018). “Reconciling systematic differences between observed and simulated ocean deoxygenation,” in Proceedings of the 4th International Symposium on the Effects of Climate Change on the World’s Oceans 4 (ECCWO) Meeting, Washington, DC.
Oschlies A. Brandt P. Stramma L. Schmidtko S. (2018). Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11 467–473. 10.1038/s41561-018-0152-2
Pairaud I. Repecaud M. Ravel C. Fuchs R. Arnaud M. Champelovier A. et al. (2016). “MesuRho. Plateforme instrumentée de suivi des paramètres environnementaux à l’embouchure du Rhône,” in Mesures à haute résolution dans l’environnement marin côtier, eds Schmitt F. G. Lefebvre A. (Paris: CNRS), 73–87.
Pastres R. Ciavatta S. Solidoro C. (2003). The Extended Kalman Filter (EKF) as a tool for the assimilation of high frequency water quality data. Ecol. Model. 170 227–235. 10.1016/S0304-3800(03)00230-8
Paulmier A. (2017). “Oxygen and the ocean,” in The Ocean revealed, eds Euzen A. Gaill F. Lacroix D. Cury P. (Paris: CNRS), 48–49.
Paulmier A. Ruiz-Pino D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80 113–128. 10.1016/j.pocean.2008.08.001
Pauly D. Zeller D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7 1–9. 10.1038/ncomms10244 26784963
Pitcher G. C. Aguirre A. Breitburg D. Cardich J. Carstensen J. Conley D. J. et al. (2021). System controls of coastal and open ocean oxygen depletion. Prog. Oceanogr. 197:102613. 10.1016/j.pocean.2021.102613
Pollock M. S. Clarke L. M. J. Dubé M. G. (2007). The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ. Rev. 5 1–14. 10.1139/a06-006
Polsenaere P. Deflandre B. Thouzeau G. Rigaud S. Cox T. Amice E. et al. (2021). Comparison of benthic oxygen exchange measured by aquatic Eddy Covariance and Benthic Chambers in two contrasting coastal biotopes (Bay of Brest, France). Regional Stud. Mar. Sci. 43:101668. 10.1016/j.rsma.2021.101668
Pörtner H. O. (2021). Climate impacts on organisms, ecosystems and human societies:integrating OCLTT into a wider context. J. Exper. Biol. 224:jeb238360. 10.1242/jeb.238360 33627467
Purcell K. M. Craig J. K. Nance J. M. Smith M. D. Bennear L. S. (2017). Fleet behavior is responsive to a large-scale environmental disturbance: Hypoxia effects on the spatial dynamics of the northern Gulf of Mexico shrimp fishery. PloS One 12:e0183032. 10.1371/journal.pone.0183032 28837674
Purser A. Thomsen L. Barnes C. Best M. Chapman R. Hofbauer M. et al. (2013). Temporal and spatial benthic data collection via an internet operated deep sea crawler. Meth. Oceanogr. 5 1–18. 10.1016/j.mio.2013.07.001
Queirós A. M. Huebert K. B. Keyl F. Fernandes J. A. Stolte W. Maar M. et al. (2016). Solutions for ecosystem-level protection of ocean systems under climate change. Glob. Change Biol. 22, 3927–3936. 10.1111/gcb.13423 27396719
Rabalais N. N. (2015). Human impacts on fisheries across the land–sea interface. Proc. Natl. Acad. Sci. 112 7892–7893. 10.1073/pnas.1508766112 26124117
Rabalais N. N. Diaz R. J. Levin L. A. Turner R. E. Gilbert D. Zhang J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585. 10.5194/bg-7-585-2010
Rabalais N. N. Turner R. E. Wiseman W. J. (2002). Gulf of Mexico hypoxia, a.k.a. “the dead zone”. Annu. Rev. Ecol. Syst. 33 235–263. 10.1146/annurev.ecolsys.33.010802.150513
Rabalais N. N. Turner R. E. Gupta B. S. Boesch D. F. Chapman P. Murrell M. C. (2007a). Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia? Estuaries Coasts 30 753–772. 10.1007/BF02841332
Rabalais N. N. Turner R. E. Sen Gupta B. K. Platon E. Parsons M. L. (2007b). Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecol. Appl. 17 S129–S143. 10.1890/06-0644.1
Racapé V. Thierry V. Mercier H. Cabanes C. (2019). ISOW spreading and mixing as revealed by deep-argo floats launched in the charlie gibbs fracture zone. J. Geophys. Res. 124 6787–6808. 10.1029/2019JC015040
Reimers C. E. Özkan-Haller H. T. Berg P. Devol A. McCann-Grosvenor K. Sanders R. D. (2012). Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: Evaluation of the eddy correlation method. J. Geophys. Res. 117:C02021. 10.1029/2011JC007564
Resplandy L. Keeling M. Eddebbar Y. Brooks M. K. Wang R. Bopp L. et al. (2018). Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Nature 563 105–108. 10.1038/s41586-018-0651-8 30382201
Revsbech N. P. Larsen L. H. Gundersen J. K. Dalsgaard T. Ulloa O. Thamdrup B. et al. (2009). Determination of ultra-low oxygen concentrations in oxygen minimum zones by the stox sensor. Limnol. Oceanogr. Meth. 7 371–381. 10.4319/lom.2009.7.371
Ridgwell A. Hargreaves J. C. Edwards N. R. Annan J. D. Lenton T. M. Marsh R. et al. (2007). Marine geochemical data assimilation in an efficient earth system model of global biogeochemical cycling. Biogeosciences 4 87–104. 10.5194/bg-4-87-2007
Rigaud S. Deflandre B. Maire O. Bernard G. Duchêne J. C. Poirier D. et al. (2018). Transient biogeochemistry in intertidal sediments: New insights from tidal pools in Zostera noltei meadows of Arcachon Bay (France). Mar. Chem. 200 1–13. 10.1016/j.marchem.2018.02.002
Roemmich D. Alford M. H. Claustre H. Johnson K. King B. Moum J. et al. (2019). On the future of Argo: An enhanced global array of physical and biogeochemical sensing floats. Front. Mar. Sci. 6:439. 10.3389/fmars.2019.00439
Roman M. R. Brandt S. B. Houde E. D. Pierson J. J. (2019). Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish. Front. Mar. Sci. 6:139. 10.3389/fmars.2019.00139
Rose K. A. Creekmore S. Thomas P. Craig J. K. Rahman M. S. Neilan R. M. (2018). Modeling the population effects of hypoxia on Atlantic croaker (Micropogonias undulatus) in the northwestern Gulf of Mexico: part 1—model description and idealized hypoxia. Estuaries Coasts 41 233–254. 10.1007/s12237-017-0266-6
Rose K. A. Gutierrez Aguilar D. Breitburg D. Conley D. Craig J. K. Froehlich H. E. et al. (2019). “Impacts of ocean deoxygenation on fisheries,” in Ocean Deoxygenation: Everyone’s Problem - Causes, impacts, consequences and solutions, eds Laffoley D. Baxter J. M. (Gland, Switzerland: International Union for Conservation of Nature and Natural Resources (IUCN)), 519–544.
Rovelli L. Attard K. M. Bryant L. D. Flögel S. Stahl H. Roberts J. M. et al. (2015). Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser. 525 97–104. 10.3354/meps11211
Rudnick D. L. (2016b). Instrument Development Group, Scripps Institution of Oceanography. La Jolla, CA: California Underwater Glider Network.
Rudnick D. L. (2016a). Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci. 8 519–541. 10.1146/annurev-marine-122414-033913 26291384
Rudnick D. L. Zaba K. D. Todd R. E. Davis R. E. (2017). A climatology of the California current system from a network of underwater gliders. Prog. Oceanogr. 154 64–106. 10.1016/j.pocean.2017.03.002
Sánchez-Velasco L. Godínez V. M. Ruvalcaba-Aroche E. D. Márquez-Artavia A. Beier E. Barton E. D. et al. (2019). Larval fish habitats and deoxygenation in the northern limit of the oxygen minimum zone off Mexico. J. Geophys. Res. Oceans 124 9690–9705. 10.1029/2019JC015414
Sasano D. Takatani Y. Kosugi N. Nakano T. Midorikawa T. Ishii M. (2018). Decline and bidecadal oscillations of dissolved oxygen in the Oyashio region and their propagation to the western North Pacific. Glob. Biogeochem. Cycles 32 909–931. 10.1029/2017GB005876
Saunders P. M. (1986). The accuracy of salinity, oxygen in the deep ocean. J. Phys. Ocean. 16 189–195. 10.1175/1520-0485(1986)016<0189:TAOMOS>2.0.CO;2
Savchuk O. P. (2018). Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 5:95. 10.3389/fmars.2018.00095
Schmidtko S. Stramma L. Visbeck M. (2017). Decline in global oceanic oxygen content during the past five decades. Nature 542 335–339. 10.1038/nature21399 28202958
Seibel B. A. Deutsch C. (2020). Oxygen supply capacity in animals evolves to meetmaximum demand at the current oxygen partial pressure regardless of size or temperature. J. Exp. Biol. 223:jeb210492. 10.1242/jeb.210492 32376709
Seibel B. A. Andres A. Birk M. A. Shaw C. T. Timpe A. Welsh C. (2021). Oxygen supply capacity breathes new life into the critical oxygen partial pressure (Pcrit). J. Exper. Biol. 224:jeb242210. 10.1242/jeb.242210 33692079
Seitzinger S. P. Mayorga E. Bouwman A. F. Kroeze C. Beusen A. H. W. Billen G. et al. (2010). Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycles 24:GB0A08. 10.1029/2009GB003587
Smith K. L. Jr. Sherman A. D. McGill P. R. Henthorn R. G. Ferreira J. Huffard C. L. (2017). Evolution of monitoring an abyssal time- series station in the northeast Pacific over 28 years. Oceanography 30 72–81. 10.5670/oceanog.2017.425
Soetaert K. Grégoire M. (2011). Estimating marine biogeochemical rates of the carbonate pH system—A Kalman filter tested. Ecol. Modell. 222 1929–1942. 10.1016/j.ecolmodel.2011.03.012
Staudinger C. Strobl M. Fischer J. P. Thar R. Mayr T. Aigner D. et al. (2018). A versatile optode system for oxygen, carbon dioxide, and pH measurements in seawater with integrated battery and logger. Limnol. Oceanogr. Meth. 16 459–473. 10.1002/lom3.10260
Steinhoff T. Gkritzalis T. Lauvset S. K. Jones S. Schuster U. Olsen A. et al. (2019). Constraining the oceanic uptake and fluxes of greenhouse gases by building an ocean network of certified stations: The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans. Front. Mar. Sci. 6:544. 10.3389/fmars.2019.00544
Stramma L. Johnson G. C. Sprintall J. Mohrholz V. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science 320 655–658. 10.1126/science.1153847 18451300
Stramma L. Prince E. D. Schmidtko S. Luo J. Hoolihan J. P. Visbeck M. et al. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Climate Change 2 33–37. 10.1038/nclimate1304
Stratmann T. Soetaert K. Wei C.-L. Lin Y.-S. van Oevelen D. (2019). The SCOC database, a large, open, and global database with sediment community oxygen consumption rates. Sci. Data 6:242. 10.1038/s41597-019-0259-3 31664032
Sumaila U. R. Ebrahim N. Schuhbauer A. Skerritt D. Li Y. Kim H. et al. (2019). Updated estimates and analysis of global fisheries subsides. Mar. Policy 109:103695. 10.1016/j.marpol.2019.103695
Swartz W. Sumaila U. R. Watson R. (2013). Global Ex-Vessel Fish Price Database revisited: a new approach for estimating ‘missing’ prices. Environ. Resour. Econ. 56 467–480. 10.1007/s10640-012-9611-1
Takeshita Y. Jones B. Johnson K. S. Chavez F. P. Rudnick D. Blum M. et al. (2021). Accurate pH and O2 measurements from Spray underwater gliders. J. Atmosp. Ocean. Technol. 38 181–195. 10.1175/JTECH-D-20-0095.1
Takeshita Y. Martz T. R. Johnson K. S. Plant J. N. Gilbert D. Riser S. C. et al. (2013). A climatology-based quality control procedure for profiling float oxygen data. J. Geophys. Res. Oceans 118 5640–5650. 10.1002/jgrc.20399
Tanhua T. van Heuven S. Key R. Velo A. Olsen A. Schirnick C. (2010). Quality control procedures and methods of the CARINA database. Earth Syst. Sci. Data 2 35–49. 10.5194/essd-2-35-2010
Tengberg A. De Bovee F. Hall P. Berelson W. Cicceri G. Crassous P. et al. (1995). Benthic chamber and profile landers in oceanography - A review of design, technical solutions and functioning. Prog. Oceanogr. 35 253–294. 10.1016/0079-6611(95)00009-6
Testor P. de Young B. Rudnick D. L. Glenn S. Hayes D. Lee C. L. et al. (2019). OceanGliders: A component of the integrated GOOS. Front. Mar. Sci. 6:422. 10.3389/fmars.2019.00422
Thierry V. Bittig H. (2018). Argo Quality Control Manual for Dissolved Oxygen Concentration, v2.0. France: IFREMER for Argo BGC Group.
Thierry V. Gilbert D. Kobayashi T. Schmid C. (2018). Processing argo oxygen data at the DAC level, v2.3.1. Brest, France: IFREMER.
Thomas P. Rahman M. S. (2010). Region-wide impairment of Atlantic croaker testicular development and sperm production in the northern Gulf of Mexico hypoxic dead zone. Mar. Env. Res. 69 S59–S62. 10.1016/j.marenvres.2009.10.017 19931178
Tiano L. Garcia-Robledo E. Dalsgaard T. Devol A. H. Ward B. B. Ulloa O. et al. (2014). Oxygen distribution and aerobic respiration in the north and south eastern tropical pacific oxygen minimum zones. Deep-Sea Res Part I-Oceanogr. Res. Pap. 94 173–183. 10.1016/j.dsr.2014.10.001
Tomasetti S. J. Gobler C. J. (2020). Dissolved oxygen and pH criteria leave fisheries at risk. Science 368 372–373. 10.1126/science.aba4896 32327589
Toussaint F. Rabouille C. Cathalot C. Bombled B. Abchiche A. Aouji O. et al. (2014). A new device to follow temporal variations of oxygen demand in deltaic sediments: the LSCE benthic station. Limnol. Oceanogr. Methods 12 729–741. 10.4319/lom.2014.12.729
Townhill B. L. van der Molen J. Metcalfe J. D. Simpson S. D. Farcas A. Pinnegar J. K. (2017). Consequences of climate-induced low oxygen conditions for commercially important fish. Mar. Ecol. Prog. Ser. 580 191–204. 10.3354/meps12291
Troupin C. Barth A. Sirjacobs D. Ouberdous M. Brankart J.-M. Brasseur P. et al. (2012). Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (DIVA). Ocean Model. 52–53 90–101. 10.1016/j.ocemod.2012.05.002
Tyler R. Brady D. C. Targett T. E. (2009). Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coasts 32:145. 10.1007/s12237-008-9108-x
Uchida H. Johnson G. C. McTaggart K. E. (2010). “CTD oxygen sensor calibration procedures,” in The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines, eds Hood E. M. Sabine C. L. Sloyan B. M. (Brest, France: ICPO Publication).
Ulses C. Estournel C. Fourrier M. Coppola L. Kessouri F. Lefèvre D. et al. (2021). Oxygen budget of the north-western Mediterranean deep- convection region. Biogeosciences 18 937–960. 10.5194/bg-18-937-2021
UNESCO (2012). FOO: Framework for Ocean Observing By the Task Team for an Integrated Framework for Sustained Ocean Observing, UNESCO 2012, IOC/INF- 1284. Paris: UNESCO.
Vaquer-Sunyer R. Duarte C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105 15452–15457. 10.1073/pnas.0803833105 18824689
Vergara O. Dewitte B. Montes Torres I. Garçon V. Ramos M. Paulmier A. et al. (2016). Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model. Biogeosciences 13 4389–4410. 10.5194/bg-13-4389-2016
Vinci M. Giorgetti A. Lipizer M. (2017). The role of EMODnet chemistry in the european challenge for good environmental status. Nat. Hazards Earth Syst. Sci. 17 197–204. 10.5194/nhess-17-197-2017
Wang Z. A. Moustahfid H. Mueller A. V. Michel A. P. M. Mowlem M. Glazer B. T. et al. (2019). Advancing observation of ocean biogeochemistry, biology, and ecosystems with cost-effective in-situ sensing technologies. Front. Mar. Sci. 6:519. 10.3389/fmars.2019.00519
Wanninkhof R. Pickers P. A. Omar A. M. Sutton A. Murata A. Olsen A. et al. (2019). A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements. Front. Mar. Sci. 6:400. 10.3389/fmars.2019.00400
Wei Y. Jiao Y. An D. Li D. Li W. Wei Q. (2019). Review of dissolved oxygen detection technology: from laboratory analysis to online intelligent detection. Sensors 19:3995. 10.3390/s19183995 31527482
Wenzhöfer F. Glud R. N. (2002). Benthic carbon mineralization in the Atlantic: A synthesis based on in situ data from the last decade. Deep-Sea Res. (I) 49 1255–1279. 10.1016/S0967-0637(02)00025-0
Wenzhöfer F. Oguri K. Middelboe M. Turnewitsch R. Toyofuku T. Kitazato H. et al. (2016). Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements. Deep-Sea Res. I 116 276–286. 10.1016/j.dsr.2016.08.013
Wilkinson M. Dumontier M. Aalbersberg I. Appleton G. Axton M. Baak A. et al. (2016). The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3:160018. 10.1038/sdata.2016.18 26978244
Winkler L. W. (1888). Die Bestimmung des im Wasser gelösten Sauerstoffes. Chem. Ber. 21 2843–2855. 10.1002/cber.188802102122
Wishner K. F. Seibel B. A. Roman C. Deutsch C. Outram D. Shaw C. T. et al. (2018). Ocean deoxygenation and zooplankton: Very small oxygen differences matter. Sci. Adv. 4:eaau5180. 10.1126/sciadv.aau5180 30585291
Wong G. T. F. Cheng X.-H. (1998). Dissolved organic iodine in marine waters: Determination, occurrence and analytical implications. Mar. Chem. 59 271–281. 10.1016/S0304-4203(97)00078-9
Wong G. T. F. Li K.-Y. (2009). Winkler’s method overestimates dissolved oxygen in seawater: Iodate interference and its oceanographic implications. Mar. Chem. 115 86–91. 10.1016/j.marchem.2009.06.008
Wu R. S. (2002). Hypoxia: from molecular responses to ecosystem responses. Mar. Pollut. Bull. 45 35–45. 10.1016/S0025-326X(02)00061-9
Wu R. S. (2009). “Effects of hypoxia on fish reproduction and development,” in Fish physiology, Vol. 27 eds Richards J. G. Farrell A. P. Brauner C. J. (Cambridge: Academic Press), 79–141. 10.1016/S1546-5098(08)00003-4
Yang B. Emerson S. R. Bushinsky S. M. (2017). Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats. Glob. Biogeochem. Cycles 31 728–744. 10.1002/2016GB005545
Yasuhara M. Hunt G. Breitburg D. Tsujimoto A. Katsuki K. (2012). Human-induced marine ecological degradation: micropaleontological perspectives. Ecol. Evol. 2 3242–3268. 10.1002/ece3.425 23301187
Yasuhara M. Tittensor D. P. Hillebrand H. Worm B. (2017). Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92 199–215. 10.1111/brv.12223 26420174
Zhai W. D. Dai M. Cai W. J. (2009). Coupling of surface pCO2 and dissolved oxygen in the northern South China Sea: impacts of contrasting coastal processes. Biogeosciences 6 2589–2598. 10.5194/bg-6-2589-2009
Zhang Q. Tango P. J. Murphy R. R. Forsyth M. K. Tian R. Keisman J. et al. (2018). Chesapeake Bay dissolved oxygen criterion attainment deficit: three decades of temporal and spatial patterns. Front. Mar. Sci. 5:422. 10.3389/fmars.2018.00422 31534947