[en] Research in bioprinting is booming due to its potential in addressing several manufacturing challenges in regenerative medicine. However, there are still many hurdles to overcome to guarantee cell survival and good printability. For the 3D extrusion-based bioprinting, cell viability is amongst one of the lowest of all the bioprinting techniques and is strongly influenced by various factors including the shear stress in the print nozzle. The goal of this study is to quantify, by means of in silico modeling, the mechanical environment experienced by the bioink during the printing process. Two ubiquitous nozzle shapes, conical and blunted, were considered, as well as three common hydrogels with material properties spanning from almost Newtonian to highly shear-thinning materials following the power-law behavior: Alginate-Gelatin, Alginate and PF127. Comprehensive in silico testing of all combinations of nozzle geometry variations and hydrogels was achieved by combining a design of experiments approach (DoE) with a computational fluid dynamics (CFD) of the printing process, analyzed through a machine learning approach named Gaussian Process. Available experimental results were used to validate the CFD model and justify the use of shear stress as a surrogate for cell survival in this study. The lower and middle nozzle radius, lower nozzle length and the material properties, alone and combined, were identified as the major influencing factors affecting shear stress, and therefore cell viability, during printing. These results were successfully compared with those of reported experiments testing viability for different nozzle geometry parameters under constant flow rate or constant pressure. The in silico 3D bioprinting platform developed in this study offers the potential to assist and accelerate further development of 3D bioprinting.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Reina Romo, Esther ✱; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Department of Mechanical Engineering and Manufacturing, University of Seville, Seville, Spain
Mandal, Sourav ✱; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Amorim, Paulo; Prometheus, The Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium ; Materials Technology TC, Campus Group T, KU Leuven, Leuven, Belgium
Bloemen, Veerle; Prometheus, The Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium ; Materials Technology TC, Campus Group T, KU Leuven, Leuven, Belgium
Ferraris, Eleonora; Department of Mechanical Engineering, Campus de Nayer, KU Leuven, Leuven, Belgium
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus, The Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium ; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium ; Biomechanics Section, Department of Mechanical Engineering, KU Leuven , Leuven, Belgium
✱ These authors have contributed equally to this work.
Language :
English
Title :
Towards the Experimentally-Informed In Silico Nozzle Design Optimization for Extrusion-Based Bioprinting of Shear-Thinning Hydrogels.
Universidad de Sevilla ULiège - Université de Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique ERC - European Research Council
Funding text :
ER-R received support from the “José Castillejo grant” (CAS17/ 00179), This work received financial support from FNRS (grant T.0256.16) and under the European Union’s Horizon 2020 research and innovation programme from the European Research Council (ERC CoG INSITE 772418) and from EU H2020 RIA (JointPromise, 874837). SM acknowledges the “IPD-STEMA” fellowship offered by University of Liège, Belgium.The authors would like to thank Bernard Hocq and Thierry Marchal for Ansys Polyflow license, and Nina Van Steevoort for initial model execution. SM acknowledges Mojtaba Barzegery and other team members from KULeuven for useful discussion sessions.
Allaire J., (2012). RStudio: Integrated Development Environment for R [Software]. BostonMA 770. Available at: Available from https://www.rstudio.com Accessed July 27, 2021.
Billiet T., Gevaert E., De Schryver T., Cornelissen M., Dubruel P., (2014). The 3D Printing of Gelatin Methacrylamide Cell-Laden Tissue-Engineered Constructs with High Cell Viability. Biomaterials 35, 49–62. 10.1016/j.biomaterials.2013.09.078
Bishop E. S., Mostafa S., Pakvasa M., Luu H. H., Lee M. J., Wolf J. M., et al. (2017). 3-D Bioprinting Technologies in Tissue Engineering and Regenerative Medicine: Current and Future Trends. Genes Dis. 4, 185–195. 10.1016/j.gendis.2017.10.002
Blaeser A., Duarte Campos D. F., Puster U., Richtering W., Stevens M. M., Fischer H., (2016). Controlling Shear Stress in 3D Bioprinting Is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv. Healthc. Mater. 5, 326–333. 10.1002/adhm.201500677
Carnell R., Carnell M. R., (2019). Package `lhs’. URL.
Chang R., Nam J., Sun W., (2008). Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform Fabrication-Based Direct Cell Writing. Tissue Eng. 14, 41–48. 10.1089/ten.2007.0004
Chen E. P., Toksoy Z., Davis B. A., Geibel J. P., (2021). 3D Bioprinting of Vascularized Tissues for In Vitro and In Vivo Applications. Front. Bioeng. Biotechnol. 9, 664188. 10.3389/fbioe.2021.664188
Chhabra R. P., Richardson J. F., (2008). Non-Newtonian Flow and Applied Rheology: Engineering Applications. Butterworth-Heinemann.
Chung J. H. Y., Naficy S., Yue Z., Kapsa R., Quigley A., Moulton S. E., et al. (2013). Bio-ink Properties and Printability for Extrusion Printing Living Cells. Biomater. Sci. 1, 763–773. 10.1039/c3bm00012e
Cidonio G., Glinka M., Dawson J. I., Oreffo R. O. C., (2019). The Cell in the Ink: Improving Biofabrication by Printing Stem Cells for Skeletal Regenerative Medicine. Biomaterials 209, 10–24. 10.1016/j.biomaterials.2019.04.009
De Moor L., Fernandez S., Vercruysse C., Tytgat L., Asadian M., De Geyter N., et al. (2020). Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids. Front. Bioeng. Biotechnol. 8, 484. 10.3389/fbioe.2020.00484
Dellaquila A., Campodoni E., Tampieri A., Sandri M., (2020). Overcoming the Design Challenge in 3D Biomimetic Hybrid Scaffolds for Bone and Osteochondral Regeneration by Factorial Design. Front. Bioeng. Biotechnol. 8, 743. 10.3389/fbioe.2020.00743
Derby B., (2012). Printing and Prototyping of Tissues and Scaffolds. Science 338, 921–926. 10.1126/science.1226340
Emmermacher J., Spura D., Cziommer J., Kilian D., Wollborn T., Fritsching U., et al. (2020). Engineering Considerations on Extrusion-Based Bioprinting: Interactions of Material Behavior, Mechanical Forces and Cells in the Printing Needle. Biofabrication 12, 025022. 10.1088/1758-5090/ab7553
Faulkner-Jones A., Fyfe C., Cornelissen D.-J., Gardner J., King J., Courtney A., et al. (2015). Bioprinting of Human Pluripotent Stem Cells and Their Directed Differentiation into Hepatocyte-like Cells for the Generation of Mini-Livers in 3D. Biofabrication 7, 044102. 10.1088/1758-5090/7/4/044102
Gillispie G., Prim P., Copus J., Fisher J., Mikos A. G., Yoo J. J., et al. (2020). Assessment Methodologies for Extrusion-Based Bioink Printability. Biofabrication 12, 022003. 10.1088/1758-5090/ab6f0d
Gramacy R. B., Lee H. K. H., (2009). Adaptive Design and Analysis of Supercomputer Experiments. Technometrics 51, 130–145. 10.1198/tech.2009.0015
Gramacy R. B., (2007). Tgp: an R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models. J. Stat. Softw. 19, 6. 10.18637/jss.v019.i09
Hamby D. M., (1994). A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models. Environ. Monit. Assess. 32, 135–154. 10.1007/bf00547132
Ihaka R., Gentleman R., others (1996). R: A Language for Data Analysis and Graphics. J. Comput. graphical Stat. 5, 299–314. Available at: Available from https://www.r-project.org. 10.1080/10618600.1996.10474713
Isaksson H., Wilson W., van Donkelaar C. C., Huiskes R., Ito K., (2006). Comparison of Biophysical Stimuli for Mechano-Regulation of Tissue Differentiation During Fracture Healing. J. Biomechan. 39 (8), 1507–1516.
Jalaal M., Cottrell G., Balmforth N., Stoeber B., (2017). On the Rheology of Pluronic F127 Aqueous Solutions. J. Rheol. 61, 139–146. 10.1122/1.4971992
Ji S., Guvendiren M., (2017). Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front. Bioeng. Biotechnol. 5, 23. 10.3389/fbioe.2017.00023
Jiang T., Munguia-Lopez J. G., Flores-Torres S., Kort-Mascort J., Kinsella J. M., (2019). Extrusion Bioprinting of Soft Materials: An Emerging Technique for Biological Model Fabrication. Appl. Phys. Rev. 6, 011310. 10.1063/1.5059393
Khalil S., Sun W., (2009). Bioprinting Endothelial Cells with Alginate for 3D Tissue Constructs. J. Biomech. Eng. 131, 111002. 10.1115/1.3128729
Kim J., McKee J. A., Fontenot J. J., Jung J. P., (2019). Engineering Tissue Fabrication with Machine Intelligence: Generating a Blueprint for Regeneration. Front. Bioeng. Biotechnol. 7, 443. 10.3389/fbioe.2019.00443
Krausch N., Barz T., Sawatzki A., Gruber M., Kamel S., Neubauer P., et al. (2019). Monte Carlo Simulations for the Analysis of Non-linear Parameter Confidence Intervals in Optimal Experimental Design. Front. Bioeng. Biotechnol. 7, 122. 10.3389/fbioe.2019.00122
Lee J. M., Yeong W. Y., (2015). A Preliminary Model of Time-Pressure Dispensing System for Bioprinting Based on Printing and Material Parameters. Virtual Phys. Prototyping 10, 3–8. 10.1080/17452759.2014.979557
Li M., Tian X., Chen X., (2009). Modeling of Flow Rate, Pore Size, and Porosity for the Dispensing-Based Tissue Scaffolds Fabrication. J. manuf. Sci. Eng. 131. 10.1115/1.3123331
Li M., Tian X., Schreyer D. J., Chen X., (2011). Effect of Needle Geometry on Flow Rate and Cell Damage in the Dispensing-Based Biofabrication Process. Biotechnol. Prog. 27, 1777–1784. 10.1002/btpr.679
Mandrycky C., Wang Z., Kim K., Kim D.-H., (2016). 3D Bioprinting for Engineering Complex Tissues. Biotechnol. Adv. 34, 422–434. 10.1016/j.biotechadv.2015.12.011
McKay M. D., Beckman R. J., Conover W. J., (1979). Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 21, 239–245. 10.1080/00401706.1979.10489755
Mehrian M., Lambrechts T., Papantoniou I., Geris L., (2020). Computational Modeling of Human Mesenchymal Stromal Cell Proliferation and Extra-cellular Matrix Production in 3D Porous Scaffolds in a Perfusion Bioreactor: The Effect of Growth Factors. Front. Bioeng. Biotechnol. 8, 376. 10.3389/fbioe.2020.00376
Montgomery D. C., (2017). Design and Analysis of Experiments. John Wiley & Sons.
Moroni L., Boland T., Burdick J. A., De Maria C., Derby B., Forgacs G., et al. (2018a). Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol. 36, 384–402. 10.1016/j.tibtech.2017.10.015
Moroni L., Burdick J. A., Highley C., Lee S. J., Morimoto Y., Takeuchi S., et al. (2018b). Biofabrication Strategies for 3D In Vitro Models and Regenerative Medicine. Nat. Rev. Mater. 3, 21–37. 10.1038/s41578-018-0006-y
Mukherjee S., Nazemi M., Jonkers I., Geris L., (2020). Use of Computational Modeling to Study Joint Degeneration: a Review. Front. Bioeng. Biotechnol. 8, 93. 10.3389/fbioe.2020.00093
Murphy S. V., Atala A., (2014). 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 32, 773–785. 10.1038/nbt.2958
Myers R. H., Montgomery D. C., Anderson-Cook C. M., (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons.
Nair K., Gandhi M., Khalil S., Yan K. C., Marcolongo M., Barbee K., et al. (2009). Characterization of Cell Viability during Bioprinting Processes. Biotechnol. J. 4, 1168–1177. 10.1002/biot.200900004
Ning L., Betancourt N., Schreyer D. J., Chen X., (2018). Characterization of Cell Damage and Proliferative Ability during and after Bioprinting. ACS Biomater. Sci. Eng. 4, 3906–3918. 10.1021/acsbiomaterials.8b00714
Ning L., Yang B., Mohabatpour F., Betancourt N., Sarker M., Papagerakis P., et al. (2020). Process-induced Cell Damage: Pneumatic versus Screw-Driven Bioprinting. Biofabrication 12, 025011. 10.1088/1758-5090/ab5f53
Ong C. S., Yesantharao P., Huang C. Y., Mattson G., Boktor J., Fukunishi T., et al. (2018). 3D Bioprinting Using Stem Cells. Pediatr. Res. 83, 223–231. 10.1038/pr.2017.252
Oualline S., Oualline G., (2018). “Drawing with Inkscape,” in Practical Free Alternatives To Commercial Software (Springer), 187–219. 10.1007/978-1-4842-3075-6_9
Ouyang L., Yao R., Zhao Y., Sun W., (2016). Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells. Biofabrication 8, 035020. 10.1088/1758-5090/8/3/035020
Ozbolat I. T., (2016). 3D Bioprinting: Fundamentals, Principles and Applications. London: Academic Press.
Paxton N., Smolan W., Böck T., Melchels F., Groll J., Jungst T., (2017). Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability. Biofabrication 9, 044107. 10.1088/1758-5090/aa8dd8
Pedersen J. M., Shim Y.-S., Hans V., Phillips M. B., Macdonald J. M., Walker G., et al. (2016). Fluid Dynamic Modeling to Support the Development of Flow-Based Hepatocyte Culture Systems for Metabolism Studies. Front. Bioeng. Biotechnol. 4, 72. 10.3389/fbioe.2016.00072
Reina-Romo E., Papantoniou I., Bloemen V., Geris L., (2019). “Computational Design of Tissue Engineering Scaffolds,” in Handbook Of Tissue Engineering Scaffolds (Elsevier), Volume One, 73–92. 10.1016/b978-0-08-102563-5.00004-6
Rezende R. A., Bártolo P. J., Mendes A., Filho R. M., (2009). Rheological Behavior of Alginate Solutions for Biomanufacturing. J. Appl. Polym. Sci. 113, 3866–3871. 10.1002/app.30170
Riegel J., Mayer W., Havre Y. V., et al. (2001). FreeCAD [Software] (Version 0.19.22164). Available at: https://www.freecadweb.orgAccessed July 27, 2021.
Roche C. D., Sharma P., Ashton A. W., Jackson C., Xue M., Gentile C., (2021). Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate–Gelatin Hydrogels. Front. Bioeng. Biotechnol. 9, 110. 10.3389/fbioe.2021.636257
Sánchez E. M., Gómez-Blanco J. C., Nieto E. L., Casado J. G., Macías-García A., Díez M. A. D., et al. (2020). Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Front. Bioeng. Biotechnol. 8, 776. 10.3389/fbioe.2020.00776
Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., et al. (2008). Global Sensitivity Analysis: The Primer. Chichester: John Wiley & Sons.
Sharma R., Smits I. P., De La Vega L., Lee C., Willerth S. M., (2020). 3D Bioprinting Pluripotent Stem Cell Derived Neural Tissues Using a Novel Fibrin Bioink Containing Drug Releasing Microspheres. Front. Bioeng. Biotechnol. 8, 57. 10.3389/fbioe.2020.00057
Silvani G., Romanov V., Cox C. D., Martinac B., (2021). Biomechanical Characterization of Endothelial Cells Exposed to Shear Stress Using Acoustic Force Spectroscopy. Front. Bioeng. Biotechnol. 9, 21. 10.3389/fbioe.2021.612151
Skardal A., (2018). Perspective:“Universal” Bioink Technology for Advancing Extrusion Bioprinting-Based Biomanufacturing.
Snyder J., Son A. R., Hamid Q., Wang C., Lui Y., Sun W., (2015). Mesenchymal Stem Cell Printing and Process Regulated Cell Properties. Biofabrication 7, 044106. 10.1088/1758-5090/7/4/044106
Suntornnond R., Tan E., An J., Chua C., (2016). A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks. Materials 9, 756. 10.3390/ma9090756
Systems N. E. O., (2018). Optimum Dispense Tips Brochure. 8th ed. East Providence, RI USA. Nordson Corporation Available at: Accessed July 27, 2021https://azcscxpprodcdn.azureedge.net/-/media/Files/Nordson/efd/Products/Data-Sheets/Components/Nordson_EFD_Optimum_Tips_Brochure.pdf?la=en&rev=0d4bc76ddf0b4f1086eb7c64464be933.
Trucco D., Sharma A., Manferdini C., Gabusi E., Petretta M., Desando G., et al. (2021). Modeling and Fabrication of Silk Fibroin–Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting. ACS Biomater. Sci. Eng. 7, 3306–3320. 10.1021/acsbiomaterials.1c00410
Webb B., Doyle B. J., (2017). Parameter Optimization for 3D Bioprinting of Hydrogels. Bioprinting 8, 8–12. 10.1016/j.bprint.2017.09.001
Weller H. G., Tabor G., Jasak H., Fureby C., (1998). A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques. Comput. Phys. 12, 620–631. 10.1063/1.168744
Weller H., Greenshields C., Bainbridge W., (2019). OpenFOAM [Software] Version 7. Available at: https://openfoam.org/release/7/Accessed July 27, 2021. 10.1628/978-3-16-156027-9
Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., et al. (2019). Welcome to the Tidyverse. Joss 4, 1686. 10.21105/joss.01686
Wickham H., (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer.
Wittkowske C., Reilly G. C., Lacroix D., Perrault C. M., (2016). In Vitro bone Cell Models: Impact of Fluid Shear Stress on Bone Formation. Front. Bioeng. Biotechnol. 4, 87. 10.3389/fbioe.2016.00087
Wüst S., Müller R., Hofmann S., (2015). 3D Bioprinting of Complex Channels-Effects of Material, Orientation, Geometry, and Cell Embedding. J. Biomed. Mater. Res. 103, 2558–2570. 10.1002/jbm.a.35393
Yu C., Jiang J., (2020). A Perspective on Using Machine Learning in 3D Bioprinting. Int. J. Bioprint. 6, 95. 10.18063/ijb.v6i1.253