[en] Aerobic life is dependent on molecular oxygen for ATP regeneration, but only possible in a narrow range of oxygen concentrations. Increased oxygen tension is toxic through the generation of reactive oxygen species (ROS), while a decrease in oxygen concentration impairs energy availability and, hence, cell viability. Cells have developed strategies to respond to changes in oxygen tension: specific systems detect excessive ROS and hypoxia, leading to the activation of specific transcription factors and expression of appropriate target genes. The aim of this review is to describe how hypoxia-inducible factor-1 (HIF-1) and nuclear factor-kappaB (NF-kappaB) are regulated and what could be the sensors to the changes in oxygen levels. Some of the physiological responses initiated by these transcription factors are also mentioned.
D'Angio C.T., Finkelstein J.N. Oxygen regulation of gene expression a study in opposites . Mol. Genet. Metab. 71:2000;371-380.
Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134:1973;707-716.
Sauer H., Wartenberg M., Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 11:2001;173-186.
Thannickal V.J., Fanburg B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. 279:2000;L1005-L1028.
Goossens V., Grooten J., De Vos K., Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA. 92:1995;8115-8119.
Peus D., Meves A., Vasa R.A., Beyerle A., O'Brien T., Pittelkow M.R. H2O2 is required for UVB-induced EGF receptor and downstream signaling pathway activation. Free Radic. Biol. Med. 27:1999;1197-1202.
Huang R.P., Wu J.X., Fan Y., Adamson E.D. UV activates growth factor receptors via reactive oxygen intermediates. J. Cell. Biol. 133:1996;211-220.
Knebel A., Rahmsdorf H.J., Ullrich A., Herrlich P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants, or alkylating agents. EMBO J. 15:1996;5314-5325.
Barrett W.C., DeGnore J.P., Keng Y.F., Zhang Z.Y., Yim M.B., Chock P.B. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J. Biol. Chem. 274:1999;34543-34546.
Whisler R.L., Goyette M.A., Grants I.S., Newhouse Y.G. Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Arch. Biochem. Biophys. 319:1995;23-35.
Lee S.R., Kwon K.S., Kim S.R., Rhee S.G. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273:1998;15366-15372.
Hehner S.P., Breitkreutz R., Shubinsky G., Unsoeld H., Schulze-Osthoff K., Schmitz M.L., Droge W. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J. Immunol. 165:2000;4319-4328.
Schreck R., Albermann K., Baeuerle P.A. Nuclear factor κB an oxidative stress-responsive transcription factor of eukaryotic cells . (a review) Free Radic. Res. Commun. 17:1992;221-237.
Abate C., Patel L., Rauscher F.J., Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 249:1990;1157-1161.
Okuno H., Akahori A., Sato H., Xanthoudakis S., Curran T., Iba H. Escape from redox regulation enhances the transforming activity of Fos. Oncogene. 8:1993;695-701.
Wu X., Bishopric N.H., Discher D.J., Murphy B.J., Webster K.A. Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol. Cell. Biol. 16:1996;1035-1046.
Rainwater R., Parks D., Anderson M.E., Tegtmeyer P., Mann K. Role of cysteine residues in regulation of p53 function. Mol. Cell. Biol. 15:1995;3892-3903.
Xanthoudakis S., Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 11:1992;653-665.
Hirota K., Matsui M., Iwata S., Nishiyama A., Mori K., Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. USA. 94:1997;3633-3638.
Galter D., Mihm S., Droge W. Distinct effects of glutathione disulphide on the nuclear transcription factor κB and the activator protein-1. Eur. J. Biochem. 221:1994;639-648.
Rothwarf D.M., Karin M. The NF-κB activation pathway a paradigm in information transfer from membrane to nucleus . Science's STKE. 5:1999;1-20.
Ghosh S., Karin M. Missing pieces in the NF-κB puzzle. Cell. 109:(Suppl.):2002;S81-S96.
Pahl H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene. 18:1999;6853-6866.
Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination the control of NF-κB activity . Annu. Rev. Immunol. 18:2000;621-663.
DiDonato J.A., Hayakawa M., Rothwarf D.M., Zandi E., Karin M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature. 388:1997;548-554.
Mercurio F., Zhu H., Murray B.W., Shevchenko A., Bennett B.L., Li J., Young D.B., Barbosa M., Mann M., Manning A., Rao A. IKK-1 and IKK-2 cytokine-activated IκB kinases essential for NF-κB activation . Science. 278:1997;860-866.
Regnier C.H., Song H.Y., Gao X., Goeddel D.V., Cao Z., Rothe M. Identification and characterization of an IκB kinase. Cell. 90:1997;373-383.
Karin M. The beginning of the end IκB kinase (IKK) and NF-κB activation . J. Biol. Chem. 274:1999;27339-27342.
Israel A. The IKK complex an integrator of all signals that activate NF-κB? Trends Cell Biol. 10:2000;129-133.
Rothwarf D.M., Zandi E., Natoli G., Karin M. IKKγ is an essential regulatory subunit of the IκB kinase complex. Nature. 395:1998;297-300.
Miller B.S., Zandi E. Complete reconstitution of human IκB kinase (IKK) complex in yeast. Assessment of its stoichiometry and the role of IKKγ on the complex activity in the absence of stimulation. J. Biol. Chem. 276:2001;36320-36326.
Yaron A., Gonen H., Alkalay I., Hatzubai A., Jung S., Beyth S., Mercurio F., Manning A.M., Ciechanover A., Ben-Neriah Y. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 16:1997;6486-6494.
Birbach A., Gold P., Binder B.R., Hofer E., de Martin R., Schmid J.A. Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277:2002;10842-10851.
Schreck R., Rieber P., Baeuerle P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10:1991;2247-2258.
Suzuki Y., Nishio K., Takeshita K., Takeuchi O., Watanabe K., Sato N., Naoki K., Kudo H., Aoki T., Yamaguchi K. Effect of steroid on hyperoxia-induced ICAM-1 expression in pulmonary endothelial cells. Am. J. Physiol. 278:2000;L245-L252.
Cazals V., Nabeyrat E., Corroyer S., de Keyzer Y., Clement A. Role for NF-κB in mediating the effects of hyperoxia on IGF-binding protein 2 promoter activity in lung alveolar epithelial cells. Biochim. Biophys. Acta. 1448:1999;349-362.
Schmidt K.N., Amstad P., Cerutti P., Baeuerle P.A. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB. Chem. Biol. 2:1995;13-22.
Sappey C., Legrand-Poels S., Best-Belpomme M., Favier A., Rentier B., Piette J. Stimulation of glutathione peroxidase activity decreases HIV type 1 activation after oxidative stress. AIDS Res. Hum. Retrovir. 10:1994;1451-1456.
Renard P., Zachary M.D., Bougelet C., Mirault M.E., Haegeman G., Remacle J., Raes M. Effects of antioxidant enzyme modulations on interleukin-1-induced nuclear factor κB activation. Biochem. Pharmacol. 53:1997;149-160.
Bonizzi G., Dejardin E., Piret B., Piette J., Merville M.P., Bours V. Interleukin-1β induces nuclear factor κB in epithelial cells independently of the production of reactive oxygen intermediates. Eur. J. Biochem. 242:1996;544-549.
Bonizzi G., Piette J., Schoonbroodt S., Greimers R., Havard L., Merville M.P., Bours V. Reactive oxygen intermediate-dependent NF-κB activation by interleukin-1β requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell. Biol. 19:1999;1950-1960.
Bonizzi G., Piette J., Merville M.P., Bours V. Cell type-specific role for reactive oxygen species in nuclear factor κB activation by interleukin-1. Biochem. Pharmacol. 59:2000;7-11.
Piette J., Piret B., Bonizzi G., Schoonbroodt S., Merville M.P., Legrand-Poels S., Bours V. Multiple redox regulation in NF-κB transcription factor activation. Biol. Chem. 378:1997;1237-1245.
Schoonbroodt S., Piette J. Oxidative stress interference with the nuclear factor κB activation pathways. Biochem. Pharmacol. 60:2000;1075-1083.
Li Q., Sanlioglu S., Li S., Ritchie T., Oberley L., Engelhardt J.F. GPx-1 gene delivery modulates NF-κB activation following diverse environmental injuries through a specific subunit of the IKK complex. Antioxid. Redox Signal. 3:2001;415-432.
Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17:1998;2596-2606.
Schenk H., Klein M., Erdbrugger W., Droge W., Schulze-Osthoff K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-κB and AP-1. Proc. Natl. Acad. Sci. USA. 91:1994;1672-1676.
Jin D.Y., Chae H.Z., Rhee S.G., Jeang K.T. Regulatory role for a novel human thioredoxin peroxidase in NF-κB activation. J. Biol. Chem. 272:1997;30952-30961.
Schoonbroodt S., Ferreira V., Best-Belpomme M., Boelaert J.R., Legrand-Poels S., Korner M., Piette J. Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of IκBα in NF-κB activation by an oxidative stress. J. Immunol. 164:2000;4292-4300.
Marshall H.E., Merchant K., Stamler J.S. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14:2000;1889-1900.
Matthews J.R., Wakasugi N., Virelizier J.L., Yodoi J., Hay R.T. Thioredoxin regulates the DNA-binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62. Nucl. Acids Res. 20:1992;3821-3830.
Obin M., Shang F., Gong X., Handelman G., Blumberg J., Taylor A. Redox regulation of ubiquitin-conjugating enzymes mechanistic insights using the thiol-specific oxidant diamide . FASEB J. 12:1998;561-569.
Jaspers I., Zhang W., Fraser A., Samet J.M., Reed W. Hydrogen peroxide has opposing effects on IKK activity and IκBα breakdown in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 24:2001;769-777.
Seres T., Ravichandran V., Moriguchi T., Rokutan K., Thomas J.A., Johnston R.B. Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress. J. Immunol. 156:1996;1973-1980.
Kapahi P., Takahashi T., Natoli G., Adams S.R., Chen Y., Tsien R.Y., Karin M. Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. J. Biol. Chem. 275:2000;36062-36066.
Xie Q.W., Kashiwabara Y., Nathan C. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269:1994;4705-4708.
Lander H.M., Sehajpal P., Levine D.M., Novogrodsky A. Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J. Immunol. 150:1993;1509-1516.
Lander H.M., Ogiste J.S., Pearce S.F., Levi R., Novogrodsky A. Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J. Biol. Chem. 270:1995;7017-7020.
De Caterina R., Libby P., Peng H.B., Thannickal V.J., Rajavashisth T.B., Gimbrone M.A., Shin W.S., Liao J.K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96:1995;60-68.
Thomassen M.J., Buhrow L.T., Connors M.J., Kaneko F.T., Erzurum S.C., Kavuru M.S. Nitric oxide inhibits inflammatory cytokine production by human alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 17:1997;279-283.
Lee S.K., Kim J.H., Yang W.S., Kim S.B., Park S.K., Park J.S. Exogenous nitric oxide inhibits VCAM-1 expression in human peritoneal mesothelial cells. Role of cyclic gmp and NF-κB. Nephron. 90:2002;447-454.
Raychaudhuri B., Dweik R., Connors M.J., Buhrow L., Malur A., Drazba J., Arroliga A.C., Erzurum S.C., Kavuru M.S., Thomassen M.J. Nitric oxide blocks nuclear factor κB activation in alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 21:1999;311-316.
Peng H.B., Libby P., Liao J.K. Induction and stabilization of IκBα by nitric oxide mediates inhibition of NF-κB. J. Biol. Chem. 270:1995;14214-14219.
Chen F., Kuhn D.C., Sun S.C., Gaydos L.J., Demers L.M. Dependence and reversal of nitric oxide production on NF-κB in silica and lipopolysaccharide-induced macrophages. Biochem. Biophys. Res. Commun. 214:1995;839-846.
Blais V., Rivest S. Inhibitory action of nitric oxide on circulating tumor necrosis factor-induced NF-κB activity and COX-2 transcription in the endothelium of the brain capillaries. J. Neuropathol. Exp. Neurol. 60:2001;893-905.
D'Acquisto F., Maiuri M.C., de Cristofaro F., Carnuccio R. Nitric oxide prevents inducible cyclooxygenase expression by inhibiting nuclear factor κB and nuclear factor-interleukin-6 activation. Naunyn Schmiedebergs Arch. Pharmacol. 364:2001;157-165.
Semenza G.L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor-1. Annu. Rev. Cell. Dev. Biol. 15:1999;551-578.
An W.G., Kanekal M., Simon M.C., Maltepe E., Blagosklonny M.V., Neckers L.M. Stabilization of wild-type p53 by hypoxia-inducible factor-1α Nature. 392:1998;405-408.
Carmeliet P., Dor Y., Herbert J.M., Fukumura D., Brusselmans K., Dewerchin M., Neeman M., Bono F., Abramovitch R., Maxwell P., Koch C.J., Ratcliffe P., Moons L., Jain R.K., Collen D., Keshert E., Keshet E. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation, and tumor angiogenesis. Nature. 394:1998;485-490.
Piret, J.-P.; Mottet, D.; Raes, M.; Michiels, C. Is HIF-1α a pro- or an antiapoptotic protein? Biochem. Pharmacol. In press.
Wang G.L., Semenza G.L. Purification and characterization of hypoxia-inducible factor-1. J. Biol. Chem. 270:1995;1230-1237.
Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor-1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 92:1995;5510-5514.
Jiang B.H., Semenza G.L., Bauer C., Marti H.H. Hypoxia-inducible factor-1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271:1996;C1172-C1180.
Jiang B.H., Zheng J.Z., Leung S.W., Roe R., Semenza G.L. Transactivation and inhibitory domains of hypoxia-inducible factor-1α. Modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272:1997;19253-19260.
Pugh C.W., O'Rourke J.F., Nagao M., Gleadle J.M., Ratcliffe P.J. Activation of hypoxia-inducible factor-1 definition of regulatory domains within the α subunit . J. Biol. Chem. 272:1997;11205-11214.
Minet E., Michel G., Mottet D., Raes M., Michiels C. Transduction pathways involved in hypoxia-inducible factor-1 phosphorylation and activation. Free Radic. Biol. Med. 31:2001;847-855.
Sodhi A., Montaner S., Miyazaki H., Gutkind J.S. MAPK and Akt act cooperatively but independently on hypoxia-inducible factor-1α in rasV12 upregulation of VEGF. Biochem. Biophys. Res. Commun. 287:2001;292-300.
Ema M., Hirota K., Mimura J., Abe H., Yodoi J., Sogawa K., Poellinger L., Fujii-Kuriyama Y. Molecular mechanisms of transcription activation by HLF and HIF-1α in response to hypoxia their stabilization and redox signal-induced interaction with CBP/p300 . EMBO J. 18:1999;1905-1914.
Huang L.E., Gu J., Schau M., Bunn H.F. Regulation of hypoxia-inducible factor-1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA. 95:1998;7987-7992.
Ohh M., Park C.W., Ivan M., Hoffman M.A., Kim T.Y., Huang L.E., Pavletich N., Chau V., Kaelin W.G. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat. Cell. Biol. 2:2000;423-427.
Kamura T., Sato S., Iwai K., Czyzyk-Krzeska M., Conaway R.C., Conaway J.W. Activation of HIF-1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. USA. 97:2000;10430-10435.
Tanimoto K., Makino Y., Pereira T., Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19:2000;4298-4309.
Maxwell P.H., Pugh C.W., Ratcliffe P.J. Insights into the role of the von Hippel-Lindau gene product. A key player in hypoxic regulation. Exp. Nephrol. 9:2001;235-240.
Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J.M., Lane W.S., Kaelin W.G. HIF-α targeted for VHL-mediated destruction by proline hydroxylation implications for O2 sensing . Science. 292:2001;464-468.
Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W., Ratcliffe P.J. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:2001;468-472.
Masson N., Willam C., Maxwell P.H., Pugh C.W., Ratcliffe P.J. Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J. 20:2001;5197-5206.
Min J.H., Yang H., Ivan M., Gertler F., Kaelin W.G. Jr., Pavletich N.P. Structure of an HIF-1{α}-pVHL complex hydroxyproline recognition in signaling . Science. 9:2002;9.
Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O'Rourke J., Mole D.R., Mukherji M., Metzen E., Wilson M.I., Dhanda A., Tian Y.M., Masson N., Hamilton D.L., Jaakkola P., Barstead R., Hodgkin J., Maxwell P.H., Pugh C.W., Schofield C.J., Ratcliffe P.J. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 107:2001;43-54.
Bruick R.K., McKnight S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 294:2001;1337-1340.
Semenza G.L. Expression of hypoxia-inducible factor-1 mechanisms and consequences . Biochem. Pharmacol. 59:2000;47-53.
Bunn H.F., Poyton R.O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76:1996;839-885.
Lopez-Barneo J., Pardal R., Ortega-Saenz P. Cellular mechanism of oxygen sensing. Annu. Rev. Physiol. 63:2001;259-287.
Wenger R.H. Mammalian oxygen sensing, signaling, and gene regulation. J. Exp. Biol. 203:(Pt. 8):2000;1253-1263.
Jones R.D., Hancock J.T., Morice A.H. NADPH oxidase a universal oxygen sensor? Free Radic. Biol. Med. 29:2000;416-424.
Zhu H., Bunn H.F. Oxygen sensing and signaling impact on the regulation of physiologically important genes . Respir. Physiol. 115:1999;239-247.
Goldberg M.A., Schneider T.J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J. Biol. Chem. 269:1994;4355-4359.
Huang L.E., Willmore W.G., Gu J., Goldberg M.A., Bunn H.F. Inhibition of hypoxia-inducible factor-1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J. Biol. Chem. 274:1999;9038-9044.
Wang G.L., Semenza G.L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor-1 DNA-binding activity implications for models of hypoxia signal transduction . Blood. 82:1993;3610-3615.
Fandrey J., Frede S., Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem. J. 303:1994;507-510.
Kinnula V.L., Mirza Z., Crapo J.D., Whorton A.R. Modulation of hydrogen peroxide release from vascular endothelial cells by oxygen. Am. J. Respir. Cell. Mol. Biol. 9:1993;603-609.
Acker H. Mechanisms and meaning of cellular oxygen sensing in the organism. Respir. Physiol. 95:1994;1-10.
Gorlach A., Holtermann G., Jelkmann W., Hancock J.T., Jones S.A., Jones O.T., Acker H. Photometric characteristics of heme proteins in erythropoietin-producing hepatoma cells (HepG2). Biochem. J. 290:1993;771-776.
Zhu H., Qiu H., Yoon H.W., Huang S., Bunn H.F. Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells. Proc. Natl. Acad. Sci. USA. 96:1999;14742-14747.
Gleadle J.M., Ebert B.L., Ratcliffe P.J. Diphenylene iodonium inhibits the induction of erythropoietin and other mammalian genes by hypoxia. Implications for the mechanism of oxygen sensing. Eur. J. Biochem. 234:1995;92-99.
Goldwasser E., Alibali P., Gardner A. Differential inhibition by iodonium compounds of induced erythropoietin expression. J. Biol. Chem. 270:1995;2628-2629.
Wenger R.H., Marti H.H., Schuerer-Maly C.C., Kvietikova I., Bauer C., Gassmann M., Maly F.E. Hypoxic induction of gene expression in chronic granulomatous disease-derived B-cell lines oxygen sensing is independent of the cytochrome b558-containing nicotinamide adenine dinucleotide phosphate oxidase . Blood. 87:1996;756-761.
Archer S.L., Reeve H.L., Michelakis E., Puttagunta L., Waite R., Nelson D.P., Dinauer M.C., Weir E.K. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc. Natl. Acad. Sci. USA. 96:1999;7944-7949.
Chandel N.S., Budinger G.R., Choe S.H., Schumacker P.T. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 272:1997;18808-18816.
Chandel N.S., Maltepe E., Goldwasser E., Mathieu C.E., Simon M.C., Schumacker P.T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA. 95:1998;11715-11720.
Chandel N.S., McClintock D.S., Feliciano C.E., Wood T.M., Melendez J.A., Rodriguez A.M., Schumacker P.T. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia a mechanism of O2 sensing . J. Biol. Chem. 275:2000;25130-25138.
Agani F.H., Pichiule P., Chavez J.C., LaManna J.C. The role of mitochondria in the regulation of hypoxia-inducible factor-1 expression during hypoxia. J. Biol. Chem. 275:2000;35863-35867.
Srinivas V., Leshchinsky I., Sang N., King M.P., Minchenko A., Caro J. Oxygen sensing and HIF-1 activation do not require an active mitochondrial respiratory chain electron-transfer pathway. J. Biol. Chem. 276:2001;21995-21998.
Vaux E.C., Metzen E., Yeates K.M., Ratcliffe P.J. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood. 98:2001;296-302.
Kimura H., Weisz A., Kurashima Y., Hashimoto K., Ogura T., D'Acquisto F., Addeo R., Makuuchi M., Esumi H. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide control of hypoxia-inducible factor-1 activity by nitric oxide . Blood. 95:2000;189-197.
Palmer L.A., Gaston B., Johns R.A. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity redox-dependent effect of nitrogen oxides . Mol. Pharmacol. 58:2000;1197-1203.
Sandau K.B., Fandrey J., Brune B. Accumulation of HIF-1α under the influence of nitric oxide. Blood. 97:2001;1009-1015.
Sogawa K., Numayama-Tsuruta K., Ema M., Abe M., Abe H., Fujii-Kuriyama Y. Inhibition of hypoxia-inducible factor-1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. USA. 95:1998;7368-7373.
Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 295:2002;858-861.
Haddad J.J., Olver R.E., Land S.C. Antioxidant/pro-oxidant equilibrium regulates HIF-1α and NF-κB redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J. Biol. Chem. 275:2000;21130-21139.
Pohlman T.H., Harlan J.M. Adaptive responses of the endothelium to stress. J. Surg. Res. 89:2000;85-119.
Carden D.L., Granger D.N. Pathophysiology of ischemia/reperfusion injury. J. Pathol. 190:2000;255-266.
Lum H., Roebuck K.A. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. 280:2001;C719-C741.
Boyle E.M., Canty T.G., Morgan E.N., Yun W., Pohlman T.H., Verrier E.D. Treating myocardial ischemia/reperfusion injury by targeting endothelial cell transcription. Ann. Thorac. Surg. 68:1999;1949-1953.