[en] Machine Learning (ML) techniques are revolutionizing the way to perform
efficient materials modeling. Nevertheless, not all the ML approaches allow for
the understanding of microscopic mechanisms at play in different phenomena. To
address the latter aspect, we propose a combinatorial machine-learning approach
to obtain physical formulas based on simple and easily-accessible ingredients,
such as atomic properties. The latter are used to build materials features that
are finally employed, through Linear Regression, to predict the energetic
stability of semiconducting binary compounds with respect to zincblende and
rocksalt crystal structures. The adopted models are trained using dataset built
from first-principles calculations. Our results show that already
one-dimensional (1D) formulas well describe the energetics; a simple
grid-search optimization of the automatically-obtained 1D-formulas enhances the
prediction performances at a very small computational cost. In addition, our
approach allows to highlight the role of the different atomic properties
involved in the formulas. The computed formulas clearly indicate that "spatial"
atomic properties (i.e. radii indicating maximum probability densities for
$s,p,d$ electronic shells) drive the stabilization of one crystal structure
with respect to the other, suggesting the major relevance of the radius
associated to the $p$-shell of the cation species.
Disciplines :
Physics
Author, co-author :
Gajera, Udaykumar
Storchi, Loriano
Amoroso, Danila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Consiglio Nazionale delle Ricerche > CNR-SPIN
Delodovici, Francesco
Picozzi, Silvia
Language :
English
Title :
Towards machine learning for microscopic mechanisms: a formula search for crystal structure stability based on atomic properties
Publication date :
2022
Journal title :
Journal of Applied Physics
ISSN :
0021-8979
eISSN :
1089-7550
Publisher :
American Institute of Physics, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
G. E. Moore, Electronics 38, 114-117 (1965).
R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, npj Comput. Mater. 3, 54 (2017). 10.1038/s41524-017-0056-5
M. Fukuda, J. Zhang, Y.-T. Lee, and T. Ozaki, Mater. Adv. 2, 4392 (2021). 10.1039/D0MA00999G
D. Schwalbe-Koda, S. Kwon, C. Paris, E. Bello-Jurado, Z. Jensen, E. Olivetti, T. Willhammar, A. Corma, Y. Román-Leshkov, M. Moliner, and R. Gómez-Bombarelli, Science 374, 308 (2021). 10.1126/science.abh3350
E. R. Homer, Comput. Mater. Sci. 161, 244 (2019). 10.1016/j.commatsci.2019.01.041
S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013). 10.1038/nmat3568
M. L. Green, C. L. Choi, J. R. Hattrick-Simpers, A. M. Joshi, I. Takeuchi, S. C. Barron, E. Campo, T. Chiang, S. Empedocles, J. M. Gregoire, A. G. Kusne, J. Martin, A. Mehta, K. Persson, Z. Trautt, J. V. Duren, and A. Zakutayev, Appl. Phys. Rev. 4, 011105 (2017). 10.1063/1.4977487
A. Walsh, Nat. Chem. 7, 274 (2015). 10.1038/nchem.2213
J. Shen, V. I. Hegde, J. He, Y. Xia, and C. Wolverton, Chem. Mater. 33, 9486 (2021). 10.1021/acs.chemmater.1c02294
S. D. Griesemer, L. Ward, and C. Wolverton, Phys. Rev. Mater. 5, 105003 (2021). 10.1103/PhysRevMaterials.5.105003
J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013). 10.1007/s11837-013-0755-4
S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, and C. Wolverton, npj Comput. Mater. 1, 15010 (2015). 10.1038/npjcompumats.2015.10
C. Draxl and M. Scheffler, MRS Bull. 43, 676 (2018). 10.1557/mrs.2018.208
C. Draxl and M. Scheffler, J. Phys. Mater. 2, 036001 (2019). 10.1088/2515-7639/ab13bb
S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012). 10.1016/j.commatsci.2012.02.002
M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen, and K. S. Thygesen, 2D Mater. 8, 044002 (2021). 10.1088/2053-1583/ac1059
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. Jørgen Mortensen, T. Olsen, and K. S. Thygesen, 2D Mater. 5, 042002 (2018). 10.1088/2053-1583/aacfc1
F. Bertoldo, S. Ali, S. Manti, and K. S. Thygesen, "Quantum point defects in 2D materials: The QPOD database," arXiv:2110.01961 (2021).
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013). 10.1063/1.4812323
L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich, V. Granata, F. Gargiulo, M. Borelli, M. Uhrin, S. P. Huber, S. Zoupanos, C. S. Adorf, C. W. Andersen, O. Schütt, C. A. Pignedoli, D. Passerone, J. VandeVondele, T. C. Schulthess, B. Smit, G. Pizzi, and N. Marzari, Sci. Data 7, 299 (2020). 10.1038/s41597-020-00637-5
G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, Comput. Mater. Sci. 111, 218 (2016). 10.1016/j.commatsci.2015.09.013
S. P. Huber, E. Bosoni, M. Bercx, J. Bröder, A. Degomme, V. Dikan, K. Eimre, E. Flage-Larsen, A. Garcia, L. Genovese, D. Gresch, C. Johnston, G. Petretto, S. Poncé, G.-M. Rignanese, C. J. Sewell, B. Smit, V. Tseplyaev, M. Uhrin, D. Wortmann, A. V. Yakutovich, A. Zadoks, P. Zarabadi-Poor, B. Zhu, N. Marzari, and G. Pizzi, npj Comput. Mater. 7, 136 (2021). 10.1038/s41524-021-00594-6
H. Park, A. Ali, R. Mall, H. Bensmail, S. Sanvito, and F. El-Mellouhi, Mach. Learn.: Sci. Technol. 2, 025030 (2021). 10.1088/2632-2153/abdaf9
C. Kim, G. Pilania, and R. Ramprasad, Chem. Mater. 28, 1304 (2016). 10.1021/acs.chemmater.5b04109
E. Tsymbalov, Z. Shi, M. Dao, S. Suresh, J. Li, and A. Shapeev, npj Comput. Mater. 7, 76 (2021). 10.1038/s41524-021-00538-0
C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, and M. Scheffler, Sci. Adv. 5, eaav0693 (2019). 10.1126/sciadv.aav0693
A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M. J. Kramer, C. Long, and I. Takeuchi, Sci. Rep. 4, 6367 (2014). 10.1038/srep06367
H. Koinuma and I. Takeuchi, Nat. Mater. 3, 429 (2004). 10.1038/nmat1157
S. Manti, M. K. Svendsen, N. R. Knøsgaard, P. M. Lyngby, and K. S. Thygesen, "Predicting and machine learning structural instabilities in 2D materials," arXiv:2201.08091 (2022).
K. Kim, L. Ward, J. He, A. Krishna, A. Agrawal, and C. Wolverton, Phys. Rev. Mater. 2, 123801 (2018). 10.1103/PhysRevMaterials.2.123801
K. Pal, C. W. Park, Y. Xia, J. Shen, and C. Wolverton, "Scale-invariant machine-learning model accelerates the discovery of quaternary chalcogenides with ultralow lattice thermal conductivity," arXiv:2109.03751 (2021).
M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl, "Density-of-states similarity descriptor for unsupervised learning from materials data," arXiv:2201.02187 (2022).
K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko, and K.-R. Müller, Adv. Neural Inf. Process. Syst. 30, 992-1002 (2017).
L. Breiman, Mach. Learn. 45, 5 (2001). 10.1023/A:1010933404324
K. Gurney, Introduction to Neural Networks (UCL Press Limited, London, 1997).
T. Xie and J. C. Grossman, Phys. Rev. Lett. 120, 145301 (2018). 10.1103/PhysRevLett.120.145301
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, ACM Comput. Surv. 51, 1 (2018). 10.1145/3236009
C. Molnar, Interpretable Machine Learning, 2nd ed. (Christoph Molnar, 2022).
L. Breiman, Mach. Learn. 45, 5 (2001). 10.1023/A:1010933404324
A. Fisher, C. Rudin, and F. Dominici, arXiv:1801.01489 (2019).
S. Al-Askaar and M. Perkowski, in 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL) (IEEE, 2021), pp. 128-135.
R. Elshawi, M. H. Al-Mallah, and S. Sakr, BMC Med. Inform. Decis. Mak. 19, 1 (2019). 10.1186/s12911-018-0723-6
M. T. Ribeiro, S. Singh, and C. Guestrin, "Model-agnostic interpretability of machine learning," arXiv:1606.05386 (2016).
S. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," arXiv:1705.07874 (2017).
Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, IEEE Trans. Emerg. Top. Comput. Intell. 5, 726-745 (2021).
Q. Zhang, Y. N. Wu, and S.-C. Zhu, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2018), pp. 8827-8836.
D. Alvarez Melis and T. Jaakkola, arXiv:1806.07538 (2018).
S. Chatterjee and J. S. Simonoff, Handbook of Regression Analysis (Wiley, Hoboken, NJ, 2013).
J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets (Stanford University, Stanford, CA, 2010).
T. Miller, Artif. Intell. 267, 1 (2019). 10.1016/j.artint.2018.07.007
B. Kim, R. Khanna, and O. O. Koyejo, Adv. Neural Inf. Process. Syst. 29, 2280-2288 (2016).
D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic Regression (Springer, 2002).
A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, J. Chemom. 18, 275 (2004). 10.1002/cem.873
L. M. Ghiringhelli, "Interpretability of machine-learning models in physical sciences," arXiv:2104.10443 (2021).
L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015). 10.1103/PhysRevLett.114.105503
B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, Phys. Rev. B 89, 094104 (2014). 10.1103/PhysRevB.89.094104
L. Ward, A. Dunn, A. Faghaninia, N. E. R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain, Comput. Mater. Sci. 152, 60 (2018). 10.1016/j.commatsci.2018.05.018
L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, npj Comput. Mater. 2, 16028 (2016). 10.1038/npjcompumats.2016.28
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 10.1103/PhysRevB.45.13244
K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008). 10.1107/S0021889808012016
S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press, New York, 2014).
G. Van Rossum and F. L. Drake, Jr., Python Tutorial (Centrum voor Wiskunde en Informatica, Amsterdam, 1995).
L. Storchi, "Open Source Code"; see https://github.com/lstorchi/matinformatics (2022).
mathematica, version 13.0.0, W. R., Inc., Champaign, IL, 2021.
L. Storchi, "Mathematica Notebook," startingtest.nb; see https://github.com/lstorchi/matinformatics (2022).
F. Gao and L. Han, Comput. Optim. Appl. 51, 259 (2012). 10.1007/s10589-010-9329-3
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences (The Johns Hopkins University Press, Baltimore, MD, 2013).
C. G. Broyden, IMA J. Appl. Math. 6, 76 (1970). 10.1093/imamat/6.1.76
R. dembo, S. Eisenstat, and T. Steihaug, SIAM J. Numer. Anal. 19, 400 (1982). 10.1137/0719025
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). 10.1103/PhysRevB.47.558
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). 10.1016/0927-0256(96)00008-0
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 10.1103/PhysRevB.54.11169
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009). 10.1016/j.cpc.2009.06.022
C. Eckhardt, K. Hummer, and G. Kresse, Phys. Rev. B 89, 165201 (2014). 10.1103/PhysRevB.89.165201
L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000). 10.1103/PhysRevB.61.7877
D. Amoroso, A. Cano, and P. Ghosez, Phys. Rev. B 97, 174108 (2018). 10.1103/PhysRevB.97.174108
L. Vegard, Z. Phys. 5, 17 (1920). 10.1007/BF01349680
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.