[en] Machine Learning (ML) techniques are revolutionizing the way to perform
efficient materials modeling. Nevertheless, not all the ML approaches allow for
the understanding of microscopic mechanisms at play in different phenomena. To
address the latter aspect, we propose a combinatorial machine-learning approach
to obtain physical formulas based on simple and easily-accessible ingredients,
such as atomic properties. The latter are used to build materials features that
are finally employed, through Linear Regression, to predict the energetic
stability of semiconducting binary compounds with respect to zincblende and
rocksalt crystal structures. The adopted models are trained using dataset built
from first-principles calculations. Our results show that already
one-dimensional (1D) formulas well describe the energetics; a simple
grid-search optimization of the automatically-obtained 1D-formulas enhances the
prediction performances at a very small computational cost. In addition, our
approach allows to highlight the role of the different atomic properties
involved in the formulas. The computed formulas clearly indicate that "spatial"
atomic properties (i.e. radii indicating maximum probability densities for
$s,p,d$ electronic shells) drive the stabilization of one crystal structure
with respect to the other, suggesting the major relevance of the radius
associated to the $p$-shell of the cation species.
Disciplines :
Physics
Author, co-author :
Gajera, Udaykumar
Storchi, Loriano
Amoroso, Danila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Consiglio Nazionale delle Ricerche > CNR-SPIN
Delodovici, Francesco
Picozzi, Silvia
Language :
English
Title :
Towards machine learning for microscopic mechanisms: a formula search for crystal structure stability based on atomic properties
Publication date :
2022
Journal title :
Journal of Applied Physics
ISSN :
0021-8979
eISSN :
1089-7550
Publisher :
American Institute of Physics, United States - New York
R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, npj Comput. Mater. 3, 54 (2017). 10.1038/s41524-017-0056-5
M. Fukuda, J. Zhang, Y.-T. Lee, and T. Ozaki, Mater. Adv. 2, 4392 (2021). 10.1039/D0MA00999G
D. Schwalbe-Koda, S. Kwon, C. Paris, E. Bello-Jurado, Z. Jensen, E. Olivetti, T. Willhammar, A. Corma, Y. Román-Leshkov, M. Moliner, and R. Gómez-Bombarelli, Science 374, 308 (2021). 10.1126/science.abh3350
E. R. Homer, Comput. Mater. Sci. 161, 244 (2019). 10.1016/j.commatsci.2019.01.041
S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013). 10.1038/nmat3568
M. L. Green, C. L. Choi, J. R. Hattrick-Simpers, A. M. Joshi, I. Takeuchi, S. C. Barron, E. Campo, T. Chiang, S. Empedocles, J. M. Gregoire, A. G. Kusne, J. Martin, A. Mehta, K. Persson, Z. Trautt, J. V. Duren, and A. Zakutayev, Appl. Phys. Rev. 4, 011105 (2017). 10.1063/1.4977487
A. Walsh, Nat. Chem. 7, 274 (2015). 10.1038/nchem.2213
J. Shen, V. I. Hegde, J. He, Y. Xia, and C. Wolverton, Chem. Mater. 33, 9486 (2021). 10.1021/acs.chemmater.1c02294
S. D. Griesemer, L. Ward, and C. Wolverton, Phys. Rev. Mater. 5, 105003 (2021). 10.1103/PhysRevMaterials.5.105003
J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013). 10.1007/s11837-013-0755-4
S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol, S. Rühl, and C. Wolverton, npj Comput. Mater. 1, 15010 (2015). 10.1038/npjcompumats.2015.10
C. Draxl and M. Scheffler, MRS Bull. 43, 676 (2018). 10.1557/mrs.2018.208
C. Draxl and M. Scheffler, J. Phys. Mater. 2, 036001 (2019). 10.1088/2515-7639/ab13bb
S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012). 10.1016/j.commatsci.2012.02.002
M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen, and K. S. Thygesen, 2D Mater. 8, 044002 (2021). 10.1088/2053-1583/ac1059
S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. Jørgen Mortensen, T. Olsen, and K. S. Thygesen, 2D Mater. 5, 042002 (2018). 10.1088/2053-1583/aacfc1
F. Bertoldo, S. Ali, S. Manti, and K. S. Thygesen, "Quantum point defects in 2D materials: The QPOD database," arXiv:2110.01961 (2021).
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013). 10.1063/1.4812323
L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich, V. Granata, F. Gargiulo, M. Borelli, M. Uhrin, S. P. Huber, S. Zoupanos, C. S. Adorf, C. W. Andersen, O. Schütt, C. A. Pignedoli, D. Passerone, J. VandeVondele, T. C. Schulthess, B. Smit, G. Pizzi, and N. Marzari, Sci. Data 7, 299 (2020). 10.1038/s41597-020-00637-5
G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky, Comput. Mater. Sci. 111, 218 (2016). 10.1016/j.commatsci.2015.09.013
S. P. Huber, E. Bosoni, M. Bercx, J. Bröder, A. Degomme, V. Dikan, K. Eimre, E. Flage-Larsen, A. Garcia, L. Genovese, D. Gresch, C. Johnston, G. Petretto, S. Poncé, G.-M. Rignanese, C. J. Sewell, B. Smit, V. Tseplyaev, M. Uhrin, D. Wortmann, A. V. Yakutovich, A. Zadoks, P. Zarabadi-Poor, B. Zhu, N. Marzari, and G. Pizzi, npj Comput. Mater. 7, 136 (2021). 10.1038/s41524-021-00594-6
H. Park, A. Ali, R. Mall, H. Bensmail, S. Sanvito, and F. El-Mellouhi, Mach. Learn.: Sci. Technol. 2, 025030 (2021). 10.1088/2632-2153/abdaf9
C. Kim, G. Pilania, and R. Ramprasad, Chem. Mater. 28, 1304 (2016). 10.1021/acs.chemmater.5b04109
E. Tsymbalov, Z. Shi, M. Dao, S. Suresh, J. Li, and A. Shapeev, npj Comput. Mater. 7, 76 (2021). 10.1038/s41524-021-00538-0
C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, and M. Scheffler, Sci. Adv. 5, eaav0693 (2019). 10.1126/sciadv.aav0693
A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M. J. Kramer, C. Long, and I. Takeuchi, Sci. Rep. 4, 6367 (2014). 10.1038/srep06367
H. Koinuma and I. Takeuchi, Nat. Mater. 3, 429 (2004). 10.1038/nmat1157
S. Manti, M. K. Svendsen, N. R. Knøsgaard, P. M. Lyngby, and K. S. Thygesen, "Predicting and machine learning structural instabilities in 2D materials," arXiv:2201.08091 (2022).
K. Kim, L. Ward, J. He, A. Krishna, A. Agrawal, and C. Wolverton, Phys. Rev. Mater. 2, 123801 (2018). 10.1103/PhysRevMaterials.2.123801
K. Pal, C. W. Park, Y. Xia, J. Shen, and C. Wolverton, "Scale-invariant machine-learning model accelerates the discovery of quaternary chalcogenides with ultralow lattice thermal conductivity," arXiv:2109.03751 (2021).
M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl, "Density-of-states similarity descriptor for unsupervised learning from materials data," arXiv:2201.02187 (2022).
K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko, and K.-R. Müller, Adv. Neural Inf. Process. Syst. 30, 992-1002 (2017).
L. Breiman, Mach. Learn. 45, 5 (2001). 10.1023/A:1010933404324
K. Gurney, Introduction to Neural Networks (UCL Press Limited, London, 1997).
T. Xie and J. C. Grossman, Phys. Rev. Lett. 120, 145301 (2018). 10.1103/PhysRevLett.120.145301
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, ACM Comput. Surv. 51, 1 (2018). 10.1145/3236009
C. Molnar, Interpretable Machine Learning, 2nd ed. (Christoph Molnar, 2022).
L. Breiman, Mach. Learn. 45, 5 (2001). 10.1023/A:1010933404324
A. Fisher, C. Rudin, and F. Dominici, arXiv:1801.01489 (2019).
S. Al-Askaar and M. Perkowski, in 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL) (IEEE, 2021), pp. 128-135.
R. Elshawi, M. H. Al-Mallah, and S. Sakr, BMC Med. Inform. Decis. Mak. 19, 1 (2019). 10.1186/s12911-018-0723-6
M. T. Ribeiro, S. Singh, and C. Guestrin, "Model-agnostic interpretability of machine learning," arXiv:1606.05386 (2016).
S. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," arXiv:1705.07874 (2017).
Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, IEEE Trans. Emerg. Top. Comput. Intell. 5, 726-745 (2021).
Q. Zhang, Y. N. Wu, and S.-C. Zhu, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2018), pp. 8827-8836.
D. Alvarez Melis and T. Jaakkola, arXiv:1806.07538 (2018).
S. Chatterjee and J. S. Simonoff, Handbook of Regression Analysis (Wiley, Hoboken, NJ, 2013).
J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets (Stanford University, Stanford, CA, 2010).
T. Miller, Artif. Intell. 267, 1 (2019). 10.1016/j.artint.2018.07.007
B. Kim, R. Khanna, and O. O. Koyejo, Adv. Neural Inf. Process. Syst. 29, 2280-2288 (2016).
D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic Regression (Springer, 2002).
A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, J. Chemom. 18, 275 (2004). 10.1002/cem.873
L. M. Ghiringhelli, "Interpretability of machine-learning models in physical sciences," arXiv:2104.10443 (2021).
L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015). 10.1103/PhysRevLett.114.105503
B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, Phys. Rev. B 89, 094104 (2014). 10.1103/PhysRevB.89.094104
L. Ward, A. Dunn, A. Faghaninia, N. E. R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain, Comput. Mater. Sci. 152, 60 (2018). 10.1016/j.commatsci.2018.05.018
L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, npj Comput. Mater. 2, 16028 (2016). 10.1038/npjcompumats.2016.28
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 10.1103/PhysRev.136.B864
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 10.1103/PhysRevB.45.13244
K. Momma and F. Izumi, J. Appl. Crystallogr. 41, 653 (2008). 10.1107/S0021889808012016
S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press, New York, 2014).
G. Van Rossum and F. L. Drake, Jr., Python Tutorial (Centrum voor Wiskunde en Informatica, Amsterdam, 1995).
L. Storchi, "Open Source Code"; see https://github.com/lstorchi/matinformatics (2022).
mathematica, version 13.0.0, W. R., Inc., Champaign, IL, 2021.
L. Storchi, "Mathematica Notebook," startingtest.nb; see https://github.com/lstorchi/matinformatics (2022).
F. Gao and L. Han, Comput. Optim. Appl. 51, 259 (2012). 10.1007/s10589-010-9329-3
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences (The Johns Hopkins University Press, Baltimore, MD, 2013).
C. G. Broyden, IMA J. Appl. Math. 6, 76 (1970). 10.1093/imamat/6.1.76
R. dembo, S. Eisenstat, and T. Steihaug, SIAM J. Numer. Anal. 19, 400 (1982). 10.1137/0719025
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). 10.1103/PhysRevB.47.558
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). 10.1016/0927-0256(96)00008-0
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 10.1103/PhysRevB.54.11169
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009). 10.1016/j.cpc.2009.06.022
C. Eckhardt, K. Hummer, and G. Kresse, Phys. Rev. B 89, 165201 (2014). 10.1103/PhysRevB.89.165201
L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000). 10.1103/PhysRevB.61.7877
D. Amoroso, A. Cano, and P. Ghosez, Phys. Rev. B 97, 174108 (2018). 10.1103/PhysRevB.97.174108
L. Vegard, Z. Phys. 5, 17 (1920). 10.1007/BF01349680