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Machine Learning (ML) techniques are revolutionizing the way to perform efficient materials modeling. Nevertheless,
not all the ML approaches allow for the understanding of microscopic mechanisms at play in different phenomena. To
address the latter aspect, we propose a combinatorial machine-learning approach to obtain physical formulas based on
simple and easily-accessible ingredients, such as atomic properties. The latter are used to build materials features that
are finally employed, through Linear Regression, to predict the energetic stability of semiconducting binary compounds
with respect to zincblende and rocksalt crystal structures. The adopted models are trained using dataset built from first-
principles calculations. Our results show that already one-dimensional (1D) formulas well describe the energetics; a
simple grid-search optimization of the automatically-obtained 1D-formulas enhances the prediction performances at a
very small computational cost. In addition, our approach allows to highlight the role of the different atomic properties
involved in the formulas. The computed formulas clearly indicate that “spatial" atomic properties (i.e. radii indicating
maximum probability densities for s, p,d electronic shells) drive the stabilization of one crystal structure with respect
to the other, suggesting the major relevance of the radius associated to the p-shell of the cation species.

I. INTRODUCTION

Modeling material properties with high accuracy and low
computational cost is one of the grand-challenges in materials
science and engineering. The development of ab-initio meth-
ods have provided accurate tools for material properties pre-
diction and their further optimization; nevertheless, one dis-
advantage of approaches relying only on first-principles sim-
ulations is the high cost required in terms of computational
resources and simulation time. In recent years, the contin-
uous growth of available computational power1 has stimu-
lated scientists to move in the direction of high-throughput
simulations2–10. Along this line, open access databases,
such as OQMD1112, NOMAD13,14, Aflowlib15, C2DB16,17,
QPOD18, Materials Project19, Materials Cloud20 and related
AiiDa21,22, provide researchers with a huge collection of ba-
sic first-principles results. A large amount of ab-initio data
is thus available, which can be used for deeper analyses and
studies, provided one can count on proper tools to extract rel-
evant information out of them. Therefore, in the last years,
materials scientists have developed different Machine Learn-
ing (ML) methods to rationalize the data analysis23–32. Each
method has its own specific advantages and limitations. Meth-
ods like Neural Network (NN)33 or Random Forest 34 are very
efficient35 but not always transparent, blurring the compre-
hension of the role played by the input variables in the final
results; ML methods, based for instance on linear regression
(LR)36,37, appear to be more suitable to obtain predictive and
comprehensible models38,39. Nevertheless, finding a linear
dependence between input and output properties is not always
an easy task.

In this work, we thus propose a ML-based approach to
build sets of features (or descriptors) starting from a given set
of basic variables (e.g., atomic properties), which are subse-

quently used to construct LR models (or formulas). To test
our method, we target a prototypical case in material science:
the classification of the most stable crystal structure between
rock-salt (RS) and zinc-blende (ZB) for semiconductor AB
binary compounds40. In our approach, we adopt both simple
one-dimensional and multi-dimension LR. To identify useful
features, we generate combinations of basic atomic properties
(i.e. the independent variables in our approach) of the mate-
rial constituents through a combinatorial approach41. We then
carry out an analysis of the emerging best-performing formu-
las, identifying the role of specific atomic features in deter-
mining the final stabilization of the crystal structure. Finally,
we test the predictive capability of the obtained formulas by
applying them to “new" compounds (i.e. outside the dataset
used for training the model), finding an overall satisfactory
agreement with first-principles results. We remark that our ap-
proach is similar to what originally proposed by Ghiringhelli
et al.40, though with some differences and further extensions,
which will be carefully discussed in what follows.

II. METHODOLOGY

The approach we present here can be regarded as a com-
binatorial machine-learning: a set of basic atomic properties
(APs, listed in Table S.2 in Supplementary Information) are
randomly combined (though under certain initial constraints
detailed below), to build a set of material features (MFs).
The generated features are then used to train a LR model,
where the energy difference between rocksalt and zincblende
structures is the dependent variable (i.e., the label). Then,
we select the best performing model according to standard
performances metrics, such as the Root Mean Squared Er-
ror (RMSE). The final result of this procedure is a “formula”,
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which is a concise and clear representation of the relationship
between the used atomic properties and the energy difference
between RS and ZB phases. In the following, we describe in
detail the different steps of our approach.

A. Dataset preparation and materials

As mentioned, we aim at predicting the total energy differ-
ence (∆E = ERS−EZB) between RS and ZB phases of cubic
crystal structures for 82 semiconductor binary AB compounds
(the dataset is reported in table S.2 in SI). We employed to-
tal energies reported in Ref.40, which were calculated through
density functional theory (DFT)4243 within the local density
approximation (LDA44).

The construction of the material features (MFs), is based
on primary atomic properties of the constituents, also taken
from Ref.40. To facilitate the physical interpretation of each
MF, the APs are subdivided into two different kinds: (i) “en-
ergy" properties, including highest occupied Kohn-Sham level
(HOMO), lowest unoccupied Kohn-Sham level (LUMO), Ion-
ization Potential (IP), Electron affinity (EA); (ii) “spatial"
properties, including rs, rp, and rd , i.e. the radii where the
radial probability density of the valence s, p, and d orbitals,
respectively, reaches its maximum.

1. Formulas construction

We rely on the LR3637 approach to obtain a direct inter-
pretation of the dependent and independent variables. The
construction of a useful LR model can become troublesome,
requiring a linear dependence between features. In Ref.40, the
authors implemented an automated feature selection method
employing the LASSO regression analysis method40,46. In our
work, we use a combinatorial approach to generate the depen-
dent variable (material features) to be used within the linear
equations, and thus to finally obtain the formulas.

In Fig. 1, we illustrate the workflow of the formula genera-
tion and selection using LR. The process starts with the selec-
tion of the APs to be combined. Afterwards, we choose proto-
type functions that are simple analytical operations applied to
the APs. In our case, we selected 5 prototype functions, f (x),
namely x,x2,x3,

√
x,ex. where x is an AP. Then, we obtain

the final set of MFs by combining different prototype func-
tions via the combinatorial approach (see for instance41), and
applying the following additional set of rules:

• GEN1: combine two prototype functions in the numer-
ator, forcing them to belong to the same kind of APs,
that is both “spatial"-like or both “energy"-like; one
prototype function is at the denominator with the only
constraint to be non-zero, such as

MF =
f1(AP1)± f2(AP2)

f3(AP3)
(1)

• GEN2: combine two prototype functions with same
kind of APs at the numerator, and a single prototype

function at the denominator with argument of a different
kind with respect to the numerator ones. For instance, if
AP1 in f1(AP1) and AP2 in f2(AP2) is an “energy" term
(i.e. EA or HOMO), then AP3 must be a “spatial" term,
(i.e. rp)

MF =
f1(AP1)± f2(AP2)

f3(AP3)
(2)

• GEN3: combine two prototype functions at both the
numerator and denominator without any constraints

MF =
f1(AP1)± f2(AP2)

f3(AP3)± f4(AP4)
(3)

• GEN4: combine two prototype functions with the same
physical dimensions at both the numerator and denom-
inator

MF =
f1(AP1)? f2(AP2)

f3(AP3)? f4(AP4)
(4)

where ?=+−×÷

Each one of these set of rules corresponds to a different MFs
generator.

From the implementation point of view, each generator is
a Python47 function that produces a set of strings. Therefore,
we can easily exploit the Python capability to parse a source
code and run Python expression (code) within a program48 to
compute all the MFs’ values starting from the generated sets
of strings. This allows for an easy implementation and plugin
of other generators, leaving the workflow unchanged: a new
generator can be introduced implementing a Python function
returning a list of strings, each one being a valid MF.

Finally, in order to choose the optimal formula, we build a
LR model for each of the generated MF. To practically select
the best model, i.e. the “best formula”, we randomly split
the full dataset into : 90% as training set to train/initialize
the model; 10% as a test set to check model’s performance.
We perform this random splitting N times (with N = 150) for
each model, and we calculate the RMSE from the test set for
each run. Afterwards, we again verify the top 10 resulting
best formulas with a higher value of training set and test set
splitting, with N = 1000. We average it over all N splitting,
and we obtain avg(RMSE), as reported in our Tables.

We mention that different metrics for evaluating regression
model can lead to different formulas ranking. In this work, we
rank the obtained models based on the lowest avg(RMSE) for
direct comparison with a previous work40.

B. Formula optimization

In order to further improve the performance of our models,
we introduce an additional step, which we refer to as “for-
mula optimization". In detail, we focus on the top 10 formu-
las obtained using each generator and the subsequent LR, as
described in the previous section. After that, we use a grid
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FIG. 1. a) Basic atomic properties (APs) used to construct the material features. b) Crystal structures of RS and ZB (plot made using
the VESTA tool)45. Grey (yellow) spheres represent A (B) atoms. c) Workflow for formulas construction, machine learning methodology,
validation, and MF selection procedures. In the AB compounds, A is the atom with the lowest electronegativity.

search to find the relative weights of each prototype function
of the atomic properties (i.e., each fi(APi)) within the formula.
A first grid search ranging between -1 to 1 with the increasing
step of 0.1 is used. We multiply each fi(APi) of the formula by
the weight coefficient and we optimize the final RMSE value.
Once the procedure finds a set of optimal weight coefficients,
two subsequent grid searches, with reduced incremental step
values (0.01 and 0.001 respectively) and range of search are
performed to obtain the final set of refined weight coefficients.
Noteworthy, for each set of weight coefficients generated dur-
ing the grid search, we also run the linear regression. Thus, we
are performing a proper formula optimization, as at each step
of the grid search we are updating both the weight coefficients
as well as the slope and intercept coming from the LR.

To further clarify the procedure, we show here an exem-
plary equation:

∆E = m · a · f1(AP1)?b · f2(AP2)

c · f3(AP3)?d · f4(AP4)
+q (5)

where ∆E is the targeted material feature (MF), a,b,c,d
denote the weight coefficients scanned during the grid search,
f1(AP1), f2(AP2), f3(AP3), f4(AP4) are the prototype functions
build on the primary atomic properties APi, and m and q are
the the slope or angular coefficient and intercept, respectively,
recursively determined upon LR.

In Table II, we report the optimized, best performing for-
mula from the different generators; the top 10 formulas are
reported in Table S.1 of the Supplementary Material.

To benchmark our grid search, we also used auto-
mated coefficient-optimizing methods: Nelder-Mead49, Con-
jugate Gradient (CG)50, Broyden–Fletcher–Goldfarb–Shanno
(BFGS)51 and Truncated Newton method (TNC)52. Although
the resulting sets of coefficients are different in terms of sin-
gle values with respect to those obtained via the grid search,

the ratios between them is almost preserved as well as the
associated RMSE. In particular, for the case of GEN1 and
GEN2, the ratio between the numerator coefficients a and b
is preserved; for GEN3 and GEN4 also the denominator co-
efficients ratio, between c and d, is preserved. In Fig. S.3
of the Supplementary Material, we show the evolution of the
RMSE and different ratios for different methods using 1D fea-
ture generated by GEN3.

C. Higher-dimensional features

For the construction of higher dimensional 2D-formulas,
we combined in all possible ways pairs of MFs extracted from
the best 1000 ones and checked the avg(RMSE) using multi-
ple LR for N test-train set splits. We followed the same pro-
cess to construct the 3D formulas, where three different 1D
MFs are combined. The comparison between performances is
discussed in the following Section.

D. Test of predictive power of ∆E formula for novel AB
compounds

After obtaining the optimised 1D formulas for ∆E in the
case of AB compounds, we aimed at further verifying their va-
lidity and predictive power, by considering additional AB sys-
tems (i.e. which were not originally included in the ML train-
ing set) and by comparing values obtained from ML-predicted
∆E formula with corresponding ab-initio calculated values.
In closer detail, we focused on different alloys, obtained by
changing respectively the concentration of A-site atoms, such
as [AxA′1−x]B, and of B-site atoms, such as A[BxB′1−x]. Ac-
cordingly, one can test the efficiency of the formulas by check-
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ing the energy difference for intermediate concentrations as
obtained from optimised 1D formulas and compare their trend
with respect to first-principles results. To this end, ab-initio
electronic-structure simulations were carried out within DFT
and LDA functional. Calculations were performed using the
VASP53–55 code, employing a 8× 8× 8 k-mesh for the Bril-
louin zone sampling. We verified that the results obtained
with the pseudopotential VASP for the parent binary com-
pounds were consistent with those reported by Ghiringhelli et
al., calculated with the all-electron FHI-aims code56. For sim-
ulations at different concentrations, we adopted the so called
“Virtual Crystal Approximation” (VCA), based on virtual
atoms interpolating between the real constituent atoms57,58.
However, as well known from the literature, the VCA ap-
proach neglects some effects, such as local distortions around
atoms and, as such, should not be expected to reproduce fine
details of disordered alloys properties59. Accordingly, in some
cases (i.e. for MgxCa1−xSe alloys), in order to mimic disor-
dered structures with an improved accuracy, we calculated to-
tal energies using supercell structures, rather than using the
VCA method on primitive unit cells. Specifically, the con-
sidered supercell is the cubic unit cell composed by four AB
formula units with planes of cations alternating along the c
direction (see Figure S.4). The k-mesh was modified accord-
ingly, to maintain the same density of points employed in the
simulations of primitive cells.

III. RESULTS AND DISCUSSION

In this section, we will analyse the final formulas as ob-
tained from different generators. The results are shown in Ta-
bles I,II,III,IV; in the first row we report the results obtained
by Ghiringhelli et al.40 for comparison.

First, by comparing the avg(RMSE) values, we note that all
1D formulas obtained from our different generators better per-
form with respect to the 1D ones reported in40, where the au-
thors used the automated feature selection method LASSO46.
Noteworthy, some atomic primary features appearing in 1D
formulas of Ref.40 also appear in our obtained list of 1D for-
mulas using GEN1 and GEN2; nevertheless, those are char-
acterized by a higher avg(RMSE) than other formulas we ob-
tained via our combinatorial approaches. Additionally, for-
mulas from GEN3 show the lowest avg(RMSE) among all
the others. We also note, from Table I, that GEN1 and GEN3
provide lower avg(RMSE) compared to GEN2 and GEN4 re-
spectively; however, GEN2 and GEN4 have a higher success
rate in terms of classification prediction. This testifies the fact
that the choice of the performances metric to rank the mate-
rial features can be different according to the target problem
to be studied; different models’ performances metric are, in
fact, not always correlated.

In order to gather hints on the relative contribution of the
individual primary atomic properties to the stabilization of ei-
ther the rocksalt or the zincblende structure, we extracted the
best ten formulas with the lowest avg(RMSE) from each gen-
erator (so called “original" formulas) and then apply the for-
mula optimization, as detailed in the previous section. This

procedure attributes relative weights to each f (AP), allow-
ing to measure the importance of the individual atomic prop-
erties in driving the energy stabilization. In principle, the
avg(RMSE) value depends on random test-train splits that
we perform to our dataset. Therefore, to reduce the effect
of randomization, as a target model performances metric, we
rank our optimized formula based on the RMSE of the whole
dataset, rather than based on avg(RMSE). By comparing Ta-
ble I and Table II, it is evident that the optimization procedure
can further change the formulas ranking, providing a different
final “best formula” with respect to the non-optimized formu-
las. In particular, we notice an improvement in RMSE around
5-10% after the formula optimization.

Interestingly, our results reveal the size of the A-ion to play
a leading role in the phase stabilization; in fact, the rp(A) ra-
dius appears in the best performing formulas more frequently
than the other basic atomic properties. Therefore, we further
analysed the dependence of ∆E on rp(A). In Fig. 2, we show
∆E as a function of rp(A), including fitting curves propor-
tional to rp(A)−2 and rp(A)−3. What can be observed is a
clear dependence of ∆E on rp(A): larger (smaller) rp(A) fa-
vors RS (ZB). Moreover, there is an overall good agreement
with the fit, particularly using the rp(A)−3 function. The lat-
ter is, in fact, the most recurrent prototype function detected
by the ML models. Such a strong dependence for the energy
is not observed with respect to the other atomic properties;
other comparative plots of ∆E as a function of other f (p) are
reported in Fig. S.2 of the Supplementary Material.

From the obtained results, we remark that formulas based
on “spatial” atomic properties achieve higher ranking, thus
better performance, with respect to those including atomic en-
ergy terms, both in the original models and in the optimized
ones. Accordingly, this behaviour further confirms the pri-
mary role played by the atomic size (or, equivalently, steric
effects), in determining the energetics of the AB compounds,
i.e. in selecting the preferred crystal structure40.

FIG. 2. Energy difference between rocksalt and zincblende, ∆E
(in eV), as a function of rp(A) for different binary compounds (blue
triangles). Data fit functions are also shown, using proportionality
to rp(A)−2 and rp(A)−3 via green dashed line and red straight line,
respectively.
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In the aim of further proving such trends and validate
the implemented combinatorial ML method, we study the
energetics in alloys of the type [AxA′1−x]B and A[BxB′1−x],
where x is the relative concentration of the mixing ions,
monotonically tuning thus the average size of one ion with
respect the other. All the alloy input properties were linearly
interpolated between corresponding values for end binaries
(i.e. AB and A′B in the [AxA′1−x]B case), according to the
Vegard’s law60. For the A-ion mixing case, we considered
SrSe, CaSe, MgSe, BeSe as parent AB compounds, already
included in the original dataset. We then predicted the
energy differences between RS and ZB phases for varying
concentrations using the original and optimized 1D formulas
constructed via GEN3 and GEN4 generators (Table I and
Table II, respectively). To confirm the obtained predictions,
we thus calculated the energy difference via DFT simula-
tions, for a few intermediate concentrations. The results,
shown in Fig. 3, demonstrate an overall agreement between
first-principles calculated and machine-learning predicted
energetics. In particular, we notice a change of sign in ∆E,
reflecting the change in the stability of the RS with respect to
the ZB phase, when moving from the larger Strontium to the
smaller Beryllium at the A-site, in line with the previously
discussed relation between atomic radii of the A-ions and
phase stabilization. At variance, no such change of phase is
observed when mixing ions at the B-site, keeping fixed the
A-type one. This is confirmed, by looking at the energetics
in B[Sb1−xPx] and Sr[Se1−xSx] alloys, shown in Fig.4(a) and
Fig. 4(b), respectively. Despite the changing size of the
average B-site, the two systems preserve the crystal structure
adopted by the the parent compounds, i.e. rocksalt for the
Sr-based compounds and zincblende for the B-based com-
pounds. Such a behavior is still in line with preferred atomic
structure fixed by the ion at the A-site, consistently with
Strontium being larger than Boron. Qualitative agreement
between ML-predicted and DFT-calculated energetics is
observed again.

After discussing the results related to 1D models, we now
comment about the higher dimensional formulas. Our best
2D and 3D formulas from different generators are reported in
Tables III and IV, respectively.

To visualize the performance of the obtained formulas, we
reproduce in Fig. 5 the scatter plots of DFT-calculated ener-
gies as a function of model-predicted energy differences for
the best formulas obtained by GEN3 - in terms of avg(RMSE)
- for 1D, 1D after formula optimization, 2D, and 3D models.
From these, one can infer the quality of the prediction for the
different approaches: the narrower the area between red lines
(representing 2×avg(RMSE)), the smaller the error or, equiv-
alently, the more reliable the prediction. Notably, this is the
case when building higher dimension formulas.

In addition, a careful comparison between our results and
those reported in the reference paper, Ref.40, is reported in
Table S.1 of the Supplementary Material. In particular, in
Fig. S.1 we compared the scatter plot of the 1D formula from
GEN3 and Ref.40, with bar graphs of errors for individual
compounds. To check the improvement with respect to 1D

formulas, we considered the avg(RMSE) value, as also chosen
in Ref.40. One can observe the improvement in avg(RMSE) if
we examine 1D and 2D formulas in Tables I and III. We no-
tice around 10-20% improvement from the original 1D to 2D,
but less than 10% of optimized 1D to original 2D formulas.
Furthermore, we also notice that original and optimized 1D
formulas from GEN3 and GEN4 better perform with respect
the corresponding 2D ones reported in Ref40.

We remark that the process of formula optimization is less
computationally expensive than the construction of higher-
dimensional formulas. In addition, from the formula opti-
mization one can gain a better physical insights about the con-
tribution of individual primary atomic properties. These com-
ments overall suggest that lower-dimensional formulas con-
stitute a better choice in terms of physical interpretation and
computational efficiency.

IV. CONCLUSIONS

The knowledge of a material stable crystal structure con-
stitutes the starting point for any ab–initio modelling, since
materials properties crucially depend on the periodic atomic
arrangement in the crystal. Within this general framework,
our aim here has been to exploit ML methods to correlate the
energetic stability of different crystal structures (zincblende vs
rocksalt) for popular binary semiconducting compounds with
primary properties of their atomic constituents, the latter rep-
resenting simple and easily-accessible ingredients. Based on
atomic properties, we therefore built the material features us-
ing a combinatorial approach, we trained the machine learning
model using the created features over a density–functional–
theory dataset and we obtained simple mathematical expres-
sions to quantitatively predict the energetic stability of one
crystal structure over the other (i.e., a formula). In addition,
we have also introduced an extra step following the linear re-
gression to explore the relative contributions of individual ba-
sic atomic properties.

To investigate the performance of the combinatorial ap-
proach, we compared our results with a reference paper40,
where the authors predicted the stability of the crystal struc-
ture using an automated feature selection method. We found
that our 1D formulas constructed using the combinatorial ap-
proach achieved a higher accuracy with respect to the refer-
ence ones. Furthermore, we also learned more about the un-
derlying mechanism from the formula optimization, where we
found that the stability of RS and ZB heavily depends on the
rp radius of A-sites. This kind of understanding is, in general,
much more difficult to achieve in heavily-automated artificial–
intelligence methods, such as neural networks, where it is not
possible to interpret directly the model results. In this respect,
our approach based on linear regression allows the construc-
tion of physical models supported by machine-driven sugges-
tions of relevant ingredients; as such, it should be regarded
as a methodology offering a huge range of applications in ad-
dressing microscopic mechanisms underlying different phe-
nomena, calling for extensive investigations in the nearby fu-
ture.
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Formulas avg(RMSE) RMSE R2 Success rate Generator type

0.117 · EA(B)−IP(B)
rp(A)2 −0.342 0.1455 0.1423 0.89 89% 1D descriptor40

−0.751 · rp(B)3−exp[rs(B)]
rp(A)2 −0.317 0.1296 0.1193 0.92 90% GEN1

0.285 ·
√
|IP(B)+

√
|EA(A)|

rp(A)2 −0.387 0.1367 0.1309 0.91 91% GEN2

0.774 · rp(B)+
√
|rd(A)|

rp(A)3+rp(B)3 −0.303 0.0995 0.0963 0.95 94% GEN3

1.155 · rs(B)+rs(A)
rp(B)3+rp(A)3 −0.368 0.1103 0.1058 0.94 96% GEN4

TABLE I. 1D formulas, along with related statistics: avg(RMSE) denotes the root mean squared error for average over 1000 random train-test
splits of dataset. Instead, the RMSE is the root mean squared error for the entire dataset as training and test. Similarly, the R2 values are
calculated considering the entire dataset and they show the quality of fit between predicted and actual values. The success rate (in percent)
shows how many RS or ZB phases out of 82 have been correctly identified by the descriptor. The “Generator type" column indicates the
different generators used to produce the corresponding descriptor. RMSEs are in eV.

Formula avg(RMSE) RMSE R2 Success Rate Generator type

0.127 · 0.800·EA(B)−1.000·IP(B)
1.110·rp(A)2 −0.352 0.1457 0.1419 0.89 89% 1D descriptor40

−1.870 0.801·
√

rp(B)−0.606·exp[rp(A)]
1.010·rp(A)3 −0.968 0.1191 0.1143 0.93 91% GEN1

0.477 · 0.876·
√
|HOMO(B)|+0.468·

√
|LUMO(B)|

1.110·rp(A)2 −0.372 0.1340 0.1296 0.91 91% GEN2

1.609 · 0.642·rp(B)+0.502·
√
|rd(A)|

1.170·rp(A)3+1.170·rp(B)3 −0.309 0.0991 0.0961 0.95 94% GEN3

1.207 · 0.878·rs(B)+0.200·rp(A)
0.512·rp(B)3+0.610·rp(A)3 −0.359 0.1045 0.1016 0.94 99% GEN4

TABLE II. 1D formulas after the optimization step, along with related statistics. Notation as in table-I.

Descriptor avg(RMSE) RMSE R2 Success Rate Generator type

0.113 · EA(B)−IP(B)
rp(A)2 −1.558 · |rs(A)−rp(B)|

exp[rs(A)]
−0.133 0.1041 0.0988 0.95 96% 2D descriptor40

−0.342 · rp(B)
3−exp[rp(A)]
rp(A)3 −1.042 · rp(A)2−

√
|rd(A)|

exp[rp(A)]
−0.062 0.0989 0.0944 0.95 89% GEN1

−0.081 · IP(B)+
√
|IP(A)|

rp(A)3 −0.001 · rs(A)3−
√

rd(A)
exp(HOMOKS(A)) −0.062 0.1163 0.1100 0.93 86% GEN2

−1.175 · rp(A)−
√
|rd(A)|

rs(B)3+rp(A)3 +0.513 · rs(B)+
√
|rp(B)|

rp(B)3+rs(A)3 −0.250 0.0911 0.0878 0.96 87% GEN3

0.618 · rd(A)/rp(B)
rp(A)3∗

√
rd(A)

+1.097 · rp(A)∗
√
|rp(B)|

rp(B)3+rp(A)3 −0.384 0.0995 0.0955 0.95 92% GEN4

TABLE III. 2D descriptors, along with related statistics. Notation as in table-I.

Descriptor avg(RMSE) RMSE R2 Success Rate Generator type

0.108 · EA(B)−IP(B)
rp(A)2 −1.806 · |rs(A)−rp(B)|

exp[rs(A)]
−3.782 · |rp(B)−rs(B)|

exp[rd(A)]
−0.023 0.0818 0.0756 0.97 93% 3D descriptor40

0556 · rp(B)3−exp[rp(A)]
rp(A)3 +0.364 · rp(A)2−

√
|rd(B)|

exp[rp(A)]
,−0.124 · rp(B)2−

√
|rd(A)|

rp(A)3 −1.87 0.1003 0.0933 0.95 90% GEN1

−0.056 · (LUMOKS(A)+HOMOKS(B))
rp(A)3 +0.266 ·

√
|EA(B)|+exp(EA(B))

rs(A)3 −0.016 · HOMOKS(A)−exp(LUMOKS(B))
(rp(A)3)

−0.310 0.1300 0.1205 0.92 91% GEN2

−0.885 · rp(B)−exp[rp(A)]
rp(A)2+rp(A)3 −0.417 · rs(A)−exp[rs(B)]

rs(A)3+rp(B)3 −0.579 · rp(A)−
√
|rd(A)|

rp(B)2+rs(A)3 −0.616 0.0875 0.0834 0.96 98% GEN3

0.635 ·
√

IP(B)/
√

IP(A)]
rp(A)3+rp(B)3 +0.730 · rp(B)∗

√
|rd(A)|

rp(A)3+rp(B)3 +0.038 · IP(A)2−EA(A)2

exp(rp(A))∗exp(rd(B))
−0.358 0.0989 0.0919 0.96 93% GEN4

TABLE IV. 3D descriptors, along with related statistics. Notation as in table-I.
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FIG. 3. Total energy difference ∆E as a function of concentration(x) for [CaxSr1−x]Se, [MgxCa1−x]Se and [BexMg1−x]Se alloys, highlighted
in blue, green, and pink regions respectively. Energy differences are predicted using original and optimized 1D descriptors constructed using
GEN3 and GEN4 and verified using DFT (black line with diamond points) within VCA. For an improved accuracy, the two asterisk-highlighted
intermediate points in the [MgxCa1−x]Se region are calculated using the supercell approach rather than VCA.

FIG. 4. Total energy difference ∆E as a function of concentration (x) for a) Sr[SxSe1−x] and b) B[PxSb1−x] alloys, predicted from original and
optimized 1D descriptors constructed using GEN3 and GEN4. Model predictions are verified using energy differences calculated via DFT4243

(black-line with diamond points).
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FIG. 5. Comparison of actual (i.e. DFT) vs predicted total energy difference ∆E for a) 1D, c) 2D and d) 3D descriptors constructed using
GEN3. Panel b) shows the best 1D descriptors after formula optimization. Lower-right insets show a zoom in the relevant region where many
compounds are concentrated. Red dotted lines correspond to 2×avg(RMSE) value. The respective descriptors can be inferred from tables-I,
II, III, IV
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