Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with Bayesian networks and Markov decision processes
Nandar, Hlaing; Morato Dominguez, Pablo Gabriel; Nielsen, Jannie S.et al.
2022 • In Structure and Infrastructure Engineering - Maintenance
[en] Exposed to the cyclic action of wind and waves, offshore wind structures are subject to fatigue deterioration processes throughout their operational life, therefore constituting a structural failure risk. In order to control the risk of adverse events, physics-based deterioration models, which often contain significant uncertainties, can be updated with information collected from inspections, thus enabling decision-makers to dictate more optimal and informed maintenance interventions. The identified decision rules are, however, influenced by the deterioration model and failure criterion specified in the formulation of the pre-posterior decision-making problem. In this paper, fatigue failure criteria are integrated with Bayesian networks and Markov decision processes. The proposed methodology is implemented in the numerical experiments, specified with various crack growth models and failure criteria, for the optimal management of an offshore wind structural detail under fatigue deterioration. Within the experiments, the crack propagation, structural reliability estimates, and the optimal policies derived through heuristics and partially observable Markov decision processes (POMDPs) are thoroughly analysed, demonstrating the capability of failure assessment diagram to model the structural redundancy in offshore wind substructures, as well as the adaptability of POMDP policies.
Research Center/Unit :
Naval & Offshore Engineering, ArGEnCo, University of Liege, Liege, Belgium Department of the Built Environment, Aalborg University, Aalborg, Denmark Department of Naval Architecture, University of Strathclyde, Glasgow, UK
Disciplines :
Civil engineering
Author, co-author :
Nandar, Hlaing ; Université de Liège - ULiège > Département ArGEnCo > ANAST (Systèmes de transport et constructions navales)
Morato Dominguez, Pablo Gabriel ; Université de Liège - ULiège > Département ArGEnCo > ANAST (Systèmes de transport et constructions navales)
Nielsen, Jannie S. ; Department of the Built Environment, Aalborg University, Aalborg, Denmark
Amirafshari, Peyman ; Department of Naval Architecture, University of Strathclyde, Glasgow, UK
Kolios, Athanasios ; Department of Naval Architecture, University of Strathclyde, Glasgow, UK
Rigo, Philippe ; Université de Liège - ULiège > Département ArGEnCo > ANAST (Systèmes de transport et constructions navales)
Language :
English
Title :
Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with Bayesian networks and Markov decision processes
Publication date :
07 April 2022
Journal title :
Structure and Infrastructure Engineering - Maintenance
Amirafshari, P., Brennan, F., & Kolios, A. (2021). A fracture mechanics framework for optimising design and inspection of offshore wind turbine support structures against fatigue failure. Wind Energy Science, 6 (3), 677–699. doi: 10.5194/wes-6-677-2021
Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications. Boca Raton: Taylor and Francis Group.
Andriotis, C. P., & Papakonstantinou, K. G. (2021). Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints. Reliability Engineering & System Safety, 212, 107551. doi: 10.1016/j.ress.2021.107551
Berens, A. P., & Hovey, P. W. (1981). AFWAL-TR-81-4160 Evaluation of NDE characterization. (Vol. 1; Tech. Rep.). Dayton, OH: University of Dayton Research Institute.
British Standards. (2015). BS7910:2013 + A1:2015 Guide to methods for assessing the acceptability of flaws in metallic structures, London: BSI Standards Publication.
British Standards. (2019). BS7910:2019 Guide to methods for assessing the acceptability of flaws in metallic structures. London: BSI Standards Publication.
Chung, H. Y., Manuel, L., & Frank, K. H. (2006). Optimal inspection scheduling of steel bridges using nondestructive testing techniques. Journal of Bridge Engineering, 11 (3), 305–319. doi: 10.1061/(ASCE)1084-0702(2006)11:3(305)
Corotis, R. B., Ellis, J. H., & Jiang, M. (2005). Modeling of risk-based inspection, maintenance and life-cycle cost with partially observable Markov decision processes. Structure and Infrastructure Engineering, 1 (1), 75–84. doi: 10.1080/15732470412331289305
Dijkstra, O. (1991). A fracture mechanics approach to the assessment of the remaining fatigue life of defective welded joints. Lausanne: IABSE Workshop.
Ditlevsen, O., & Madsen, H. O. (2007). Structural reliability methods. Department of Mechanical Engineering, Technical University of Denmark.
DNV (2018). DNV-ST-0126 Support structures for wind turbines (Standard). Veritasveien 1, 1363 Høvik, Norway.
DNV (2019). DNV-RP-C210 Probabilistic methods for planning of inspection for fatigue cracks in offshore structures. (Recommended Practice). Veritasveien 1, 1363. Høvik, Norway.
Dowling, A. R., & Townley, C. H. A. (1975). The effects of defects on structural failure: A two-criteria approach. International Journal of Pressure Vessels and Piping, 3 (2), 77–137. doi: 10.1016/0308-0161(75)90014-9
Faber, M. H., Sørensen, J. D., & Kroon, I. (1992). Optimal inspection strategies for offshore structural systems. In Proceedings of the 11th international conference on offshore mechanics and Arctic engineering OMAE-11 (Vol. 2, pp. 145–152). Canada.
Fajuyigbe, A., & Brennan, F. (2021). Fitness-for-purpose assessment of cracked offshore wind turbine monopile. Marine Structures, 77, 102965. doi: 10.1016/j.marstruc.2021.102965
Frangopol, D., & Kim, S. (2019). Life-cycle of structures under uncertainty: Emphasis on fatigue-sensitive civil and marine structures. Boca Raton, FL: CRC Press.
Fujita, M., Schall, G., & Rackwitz, R. (1989). Adaptive reliability-based inspection strategies for structures subject to fatigue. In Proceedings of the 5th ICOSSAR (Vol. 2, pp. 1619–1626), United States.
Goyet, J., Maroini, A., Faber, M. H., & Paygnard, J. C. (1994). Optimal inspection and repair planning: Case studies using IMREL software. In Proceedings of the 13th international conference on offshore mechanics and Arctic engineering OMAE-13 (Vol. 2, pp. 325–333), United States.
Harrison, R. P., Milne, I., & Gray, T. G. F. (1981). Assessment of defects: The C.E.G.B. approach [and discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 299 (1446), 145–153.
Hlaing, N., Morato, P. G., Rigo, P., Amirafshari, P., Kolios, A., & Nielsen, J. S. (2020). The effect of failure criteria on risk-based inspection planning of offshore wind support structures. In Life-Cycle Civil Engineering: Innovation, Theory and Practice–Proceedings of the 7th International Symposium on Life-Cycle Civil Engineering, IALCCE 2020 (pp. 146–153). doi: 10.1201/9780429343292-13
Hong, H. P. (1997). Reliability analysis with nondestructive inspection. Structural Safety, 19 (4), 383–395. doi: 10.1016/S0167-4730(97)00018-0
Igwemezie, V., Mehmanparast, A., & Kolios, A. (2018). Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Marine Structures, 61, 381–397. doi: 10.1016/j.marstruc.2018.06.008
JCSS (2011, April). Joint Committee on Structural Safety Probabilistic model code. (Tech. Rep.).
Kim, S., Ge, B., & Frangopol, D. M. (2019). Effective optimum maintenance planning with updating based on inspection information for fatigue-sensitive structures. Probabilistic Engineering Mechanics, 58, 103003. doi: 10.1016/j.probengmech.2019.103003
Kurniawati, H., Hsu, D., & Lee, W. S. (2008). SARSOP: Efficient point-Based POMDP planning by approximating optimally reachable belief spaces. In Proceedings of Robotics: Science and Systems, Switzerland. Cambridge: MIT Press.
Lotsberg, I., Sigurdsson, G., Fjeldstad, A., & Moan, T. (2016). Probabilistic methods for planning of inspection for fatigue cracks in offshore structures. Marine Structures, 46, 167–192. doi: 10.1016/j.marstruc.2016.02.002
Luque, J., & Straub, D. (2016). Reliability analysis and updating of deteriorating systems with dynamic Bayesian networks. Structural Safety, 62, 34–46. doi: 10.1016/j.strusafe.2016.03.004
Luque, J., & Straub, D. (2019). Risk-based optimal inspection strategies for structural systems using dynamic Bayesian networks. Structural Safety, 76, 68–80. doi: 10.1016/j.strusafe.2018.08.002
Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide (2nd ed.). New York: Taylor & Francis.
Madsen, H. O., Sørensen, J. D., & Olesen, R. (1990). Optimal inspection planning for fatigue damage of offshore structures. In Proceedings of the 5th international conference on structural safety and reliability (Vol. 3, pp. 2099–2106), United States.
Mai, A. Q., Sørensen, J. D., & Rigo, P. (2016). Updating failure probability of a welded joint in offshore wind turbine substructures. In Proceedings of The 35th International Conference on Ocean, Offshore and Arctic Engineering Conference (Vol. 3), South Korea. doi: 10.1115/OMAE2016-54232
Memarzadeh, M., & Pozzi, M. (2016). Integrated inspection scheduling and maintenance planning for infrastructure systems. Computer-Aided Civil and Infrastructure Engineering, 31 (6), 403–415. doi: 10.1111/mice.12178
Moan, T. (2005). Reliability-based management of inspection, maintenance and repair of offshore structures. Structure and Infrastructure Engineering, 1 (1), 33–62. doi: 10.1080/15732470412331289314
Morato, P. G. (2021). Optimal Inspection and Maintenance Planning for Deteriorating Structures via Markov Decision Processes and Deep Reinforcement Learning: Application to Offshore Wind Substructures. (Doctoral dissertation). Liege: University of Liege. Retrieved from https://orbi.uliege.be/handle/2268/260783.
Morato, P. G., Papakonstantinou, K. G., Andriotis, C. P., Nielsen, J. S., & Rigo, P. (2022). Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes. Structural Safety, 94, 102140. doi: 10.1016/j.strusafe.2021.102140
Newman, J., & Raju, I. (1981). An empirical stress-intensity factor equation for the surface crack. Engineering Fracture Mechanics, 15 (1/2), 185–192. doi: 10.1016/0013-7944(81)90116-8
Nielsen, J. S., & Sørensen, J. D. (2018). Computational framework for risk-based planning of inspections, maintenance and condition monitoring using discrete Bayesian networks. Structure and Infrastructure Engineering, 14 (8), 1082–1094. doi: 10.1080/15732479.2017.1387155
Papakonstantinou, K. G., Andriotis, C. P., & Shinozuka, M. (2017). Point-based POMDP solvers for life-cycle cost minimization of deteriorating structures. In Proceedings of 5th International Symposium on Life-Cycle Engineering IALCCE-2016 (pp. 427–434), Netherlands.
Papakonstantinou, K. G., & Shinozuka, M. (2014a). Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation. Reliability Engineering & System Safety, 130, 214–224. doi: 10.1016/j.ress.2014.04.006
Papakonstantinou, K. G., & Shinozuka, M. (2014b). Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory. Reliability Engineering & System Safety, 130, 202–213. doi: 10.1016/j.ress.2014.04.005
Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85 (4), 528–533. doi: 10.1115/1.3656900
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA: Morgan Kaufmann Publishers.
Robelin, C. A., & Madanat, S. (2007). History-dependent bridge deck maintenance and replacement optimization with Markov decision processes. Journal of Infrastructure Systems, 13 (3), 195–201. September). doi: 10.1061/(ASCE)1076-0342(2007)13:3(195)
Soliman, S. M., Frangopol, D. M., & Mondoro, A. (2016). A probabilistic approach for optimizing inspection, monitoring, and maintenance actions against fatigue of critical ship details. Structural Safety, 60, 91–101. doi: 10.1016/j.strusafe.2015.12.004
Spaan, M., & Vlassis, N. (2005). Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial Intelligence Research, 24, 195–220. doi: 10.1613/jair.1659
Straub, D. (2004). Generic approaches to risk based inspection planning for steel structures. (Doctoral dissertation) Swiss Federal Institute of Technology, Zurich). Retrieved from https://www.research-collection.ethz.ch.
Straub, D. (2009). Stochastic modeling of deterioration processes through dynamic Bayesian networks. Journal of Engineering Mechanics, 135 (10), 1089–1099. doi: 10.1061/(ASCE)EM.1943-7889.0000024
Straub, D., & Faber, M. H. (2005). Risk based inspection planning for structural systems. Structural Safety, 27 (4), 335–355. doi: 10.1016/j.strusafe.2005.04.001
Straub, D., & Faber, M. H. (2006). Computational aspects of risk-based inspection planning. Computer-Aided Civil and Infrastructure Engineering, 21 (3), 179–192. doi: 10.1111/j.1467-8667.2006.00426.x
Wallin, K. (2011). Fracture toughness of engineering materials: Estimation and application. EMAS Publishing.
Yang, D. Y., & Frangopol, D. M. (2018). Probabilistic optimization framework for inspection/repair planning of fatigue-critical details using dynamic Bayesian networks. Computers & Structures, 198, 40–50. doi: 10.1016/j.compstruc.2018.01.006
Yang, D. Y., & Frangopol, D. M. (2022). Risk-based inspection planning of deteriorating structures. Structure and Infrastructure Engineering, 18 (1), 109–128. doi: 10.1080/15732479.2021.1907600
Zhu, J., & Collette, M. (2015). A dynamic discretization method for reliability inference in dynamic Bayesian networks. Reliability Engineering & System Safety, 138, 242–252. doi: 10.1016/j.ress.2015.01.017