[en] Algorithmic biases that favor majority populations pose a key challenge to the application of machine learning for precision medicine. Here, we assessed such bias in prediction models of behavioral phenotypes from brain functional magnetic resonance imaging. We examined the prediction bias using two independent datasets (preadolescent versus adult) of mixed ethnic/racial composition. When predictive models were trained on data dominated by white Americans (WA), out-of-sample prediction errors were generally higher for African Americans (AA) than for WA. This bias toward WA corresponds to more WA-like brain-behavior association patterns learned by the models. When models were trained on AA only, compared to training only on WA or an equal number of AA and WA participants, AA prediction accuracy improved but stayed below that for WA. Overall, the results point to the need for caution and further research regarding the application of current brain-behavior prediction models in minority populations.
Disciplines :
Neurosciences & behavior
Author, co-author :
Li, Jingwei ; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center ; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University ; Department of Electrical and Computer Engineering, Centre for Sleep and Cognition
Bzdok, Danilo ; Department of Biomedical Engineering, Montreal Neurological Institute (MNI), ; Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
Chen, Jianzhong ; Department of Electrical and Computer Engineering, Centre for Sleep and Cognition
Tam, Angela ; Department of Electrical and Computer Engineering, Centre for Sleep and Cognition
Ooi, Leon Qi Rong ; Department of Electrical and Computer Engineering, Centre for Sleep and Cognition
Holmes, Avram J ; Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA. ; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine
Ge, Tian; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, ; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, ; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School,
Patil, Kaustubh R ; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center ; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University
Jabbi, Mbemba; Department of Psychiatry, Dell Medical School, University of Texas at Austin, ; The Mulva Clinic for Neurosciences, Dell Medical School, University of Texas at ; Institute of Neuroscience, University of Texas at Austin, Austin, TX, USA. ; Department of Psychology, University of Texas at Austin, Austin, TX, USA.
Eickhoff, Simon B ; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center ; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University
Yeo, B T Thomas ; Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, ; Integrative Sciences and Engineering Programme (ISEP), National University of
Genon, Sarah ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalidation cognitive ; Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center ; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University
Language :
English
Title :
Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity.
Publication date :
18 March 2022
Journal title :
Science Advances
eISSN :
2375-2548
Publisher :
American Association for the Advancement of Science (AAAS), Washington, Us dc
H. Fröhlich, R. Balling, N. Beerenwinkel, O. Kohlbacher, S. Kumar, T. Lengauer, M. H. Maathuis, Y. Moreau, S. A. Murphy, T. M. Przytycka, M. Rebhan, H. Röst, A. Schuppert, M. Schwab, R. Spang, D. Stekhoven, J. Sun, A. Weber, D. Ziemek, B. Zupan, From hype to reality: Data science enabling personalized medicine. BMC Med. 16, 150 (2018).
D. Cirillo, A. Valencia, Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 58, 161-167 (2019).
Z. Ahmed, K. Mohamed, S. Zeeshan, X. Q. Dong, Artificial intelligence with multifunctional machine learning platform development for better healthcare and precision medicine. Database 2020, baaa010 (2020).
S. I. Lee, S. Celik, B. A. Logsdon, S. M. Lundberg, T. J. Martins, V. G. Oehler, E. H. Estey, C. P. Miller, S. Chien, J. Dai, A. Saxena, C. A. Blau, P. S. Becker, A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun. 9, 42 (2018).
V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, D. R. Webster, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J. Am. Med. Assoc. 316, 2402-2410 (2016).
I. Shomorony, E. T. Cirulli, L. Huang, L. A. Napier, R. R. Heister, M. Hicks, I. V. Cohen, H. C. Yu, C. L. Swisher, N. M. Schenker-Ahmed, W. Li, K. E. Nelson, P. Brar, A. M. Kahn, T. D. Spector, C. T. Caskey, J. C. Venter, D. S. Karow, E. F. Kirkness, N. Shah, An unsupervised learning approach to identify novel signatures of health and disease from multimodal data. Genome Med. 12, 7 (2020).
A. Chouldechova, E. Putnam-Hornstein, S. Dworak-Peck, D. Benavides-Prado, O. Fialko, R. Vaithianathan, S. A. Friedler, C. Wilson, A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. Proc. Mach. Learn. Res. 81, 134-148 (2018).
A. R. Martin, M. Kanai, Y. Kamatani, Y. Okada, B. M. Neale, M. J. Daly, Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584-591 (2019).
Z. Obermeyer, B. Powers, C. Vogeli, S. Mullainathan, Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447-453 (2019).
J. Buolamwini, T. Gebru, Gender shades: Intersectional accuracy disparities in commercial gender classification. Proc. Mach. Learn. Res. 81, 77-91 (2018).
A. Chouldechova, A. Roth, The frontiers of fairness in machine learning. arXiv:1810.08810 (2018).
S. R. Pfohl, A. Foryciarz, N. H. Shah, An empirical characterization of fair machine learning for clinical risk prediction. J. Biomed. Inform. 113, 103621 (2020).
R. Zemel, Y. Wu, K. Swersky, T. Pitassi, C. Dwork, Learning fair representations. Proc. Mach. Learn. Res. 28, 325-333 (2013).
M. Hardt, E. Price, N. Srebro, Equality of opportunity in supervised learning. Adv. Neural Inf. Process. Syst., 3323-3331 (2016).
A. Rajkomar, M. Hardt, M. D. Howell, G. Corrado, M. H. Chin, Ensuring fairness in machine learning to advance health equity. Ann. Intern. Med. 169, 866-872 (2018).
G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, K. Q. Weinberger, On fairness and calibration. arXiv:1709.02012 (2017).
A. Zink, S. Rose, Fair regression for health care spending. Biometrics 76, 973-982 (2020).
E. S. Finn, X. Shen, D. Scheinost, M. D. Rosenberg, J. Huang, M. M. Chun, X. Papademetris, R. Todd Constable, Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664-1671 (2015).
R. Kong, J. Li, C. Orban, M. R. Sabuncu, H. Liu, A. Schaefer, N. Sun, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, B. T. T. Yeo, Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533-2551 (2019).
A. S. Greene, S. Gao, D. Scheinost, R. T. Constable, Task-induced brain state manipulation improves prediction of individual traits. Nat. Commun. 9, 2807 (2018).
E. S. Finn, P. A. Bandettini, Movie-watching outperforms rest for functional connectivitybased prediction of behavior. NeuroImage 235, 117963 (2021).
J. Wu, S. B. Eickhoff, F. Hoffstaedter, K. R. Patil, H. Schwender, S. Genon, A connectivitybased psychometric prediction framework for brain-behavior relationship studies. bioRxiv 2020.01.15.907642 , (2020).
D. C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T. E. J. Behrens, R. Bucholz, A. Chang, L. Chen, M. Corbetta, S. W. Curtiss, S. Della Penna, D. Feinberg, M. F. Glasser, N. Harel, A. C. Heath, L. Larson-Prior, D. Marcus, G. Michalareas, S. Moeller, J. Xu, E. Yacoub; WU-Minn HCP Consortium, The human connectome project: A data acquisition perspective. NeuroImage 62, 2222-2231 (2012).
C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, R. Collins, UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
W. Yan, V. Calhoun, M. Song, Y. Cui, H. Yan, S. Liu, L. Fan, N. Zuo, Z. Yang, K. Xu, J. Yan, L. Lv, J. Chen, Y. Chen, H. Guo, P. Li, L. Lu, P. Wan, H. Wang, H. Wang, Y. Yang, H. Zhang, D. Zhang, T. Jiang, J. Sui, Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMed. 47, 543-552 (2019).
K. G. Noble, M. E. Wolmetz, L. G. Ochs, M. J. Farah, B. D. McCandliss, Brain-behavior relationships in reading acquisition are modulated by socioeconomic factors. Dev. Sci. 9, 642-654 (2006).
K. G. Noble, S. M. Houston, N. H. Brito, H. Bartsch, E. Kan, J. M. Kuperman, N. Akshoomoff, D. G. Amaral, C. S. Bloss, O. Libiger, N. J. Schork, S. S. Murray, B. J. Casey, L. Chang, T. M. Ernst, J. A. Frazier, J. R. Gruen, D. N. Kennedy, P. Van Zijl, S. Mostofsky, W. E. Kaufmann, T. Kenet, A. M. Dale, T. L. Jernigan, E. R. Sowell, Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18, 773-778 (2015).
U. A. Tooley, A. P. MacKey, R. Ciric, K. Ruparel, T. M. Moore, R. C. Gur, R. E. Gur, T. D. Satterthwaite, D. S. Bassett, Associations between neighborhood SES and functional brain network development. Cereb. Cortex 30, 1-19 (2020).
J. Komiyama, A. Takeda, J. Honda, and H. Shimao, Nonconvex optimization for regression with fairness constraints, in Proceedings of the 35th International Conference on Machine Learning (2018), pp. 80:2737-2746.
R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, S. Neel, A. Roth, A convex framework for fair regression. arXiv:1706.02409 (2017).
A. Agarwal, M. Dudík, Z. S. Wu, Fair regression: Quantitative definitions and reductionbased algorithms, in Proceedings of the 36th International Conference on Machine Learning (2019), pp. 97:120-129.
T. He, R. Kong, A. J. Holmes, M. Nguyen, M. R. Sabuncu, S. B. Eickhoff, D. Bzdok, J. Feng, B. T. T. Yeo, Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. NeuroImage 206, 116276 (2020).
D. Scheinost, S. Noble, C. Horien, A. S. Greene, E. M. Lake, M. Salehi, S. Gao, X. Shen, D. O'Connor, D. S. Barron, S. W. Yip, M. D. Rosenberg, R. T. Constable, Ten simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage 193, 35-45 (2019).
S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J. D. Haynes, B. Blankertz, F. Bießmann, On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96-110 (2014).
R. E. Beaty, Y. N. Kenett, A. P. Christensen, M. D. Rosenberg, M. Benedek, Q. Chen, A. Fink, J. Qiu, T. R. Kwapil, M. J. Kane, P. J. Silvia, Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl. Acad. Sci. 115, 1087-1092 (2018).
U. Pervaiz, D. Vidaurre, M. W. Woolrich, S. M. Smith, Optimising network modelling methods for fMRI. NeuroImage 211, 116604 (2020).
B. Cai, G. Zhang, A. Zhang, L. Xiao, W. Hu, J. M. Stephen, T. W. Wilson, V. D. Calhoun, Y. P. Wang, Functional connectome fingerprinting: Identifying individuals and predicting cognitive function via deep learning. arXiv:2006.09928 (2020).
S. B. Eickhoff, R. Langner, Neuroimaging-based prediction of mental traits: Road to utopia or Orwell?. PLoS Biol. 17, e3000497 (2019).
S. L. Mansour, Y. Tian, B. T. T. Yeo, V. Cropley, A. Zalesky, High-resolution connectomic fingerprints: Mapping neural identity and behavior. NeuroImage 229, 117695 (2021).
N. Pearce, Analysis of matched case-control studies. BMJ 352, i969 (2016).
P. R. Rosenbaum, D. B. Rubin, The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55 (1983).
M. Blackwell, S. Iacus, G. King, G. Porro, cem: Coarsened exact matching in Stata. Stata J. 9, 524-546 (2009).
L. J. Krivo, R. L. Kaufman, Housing and wealth inequality: Racial-ethnic differences in home equity in the United States. Demography 41, 585-605 (2004).
A. Gamoran, R. N. L. Turley, A. Turner, R. Fish, Differences between Hispanic and non-Hispanic families in social capital and child development: First-year findings from an experimental study. Res. Soc. Stratif. Mobil. 30, 97-112 (2012).
D. O'Connor, E. M. R. Lake, D. Scheinost, R. T. Constable, Resample aggregating improves the generalizability of connectome predictive modeling. NeuroImage 236, 118044 (2021).
E. Alemán Jr., Situating texas school finance policy in a CRT framework: How 'substantially equal' yields racial inequity. Educ. Adm. Q. 43, 525-558 (2007).
L. Darling-Hammond, Inequality and school resources: What it will take to close the oppotunity gap, in Closing the Opportunity Gap: What America Must do to Give Every Child an Even Chance (Oxford Univ. Press, 2013), p. 77.
V. J. Roscigno, Race and the reproduction of educational disadvantage. Soc. Forces 76, 1033-1060 (1998).
M. Romero, E. Margolis, The Blackwell Companion to Social Inequalities (John Wiley & Sons, 2008).
M. J. Farah, Socioeconomic status and the brain: Prospects for neuroscience-informed policy. Nat. Neurosci. 19, 428-438 (2018).
D.-S. Murray, L. Richardson, R. Tesfaye, D. Nadin, C. Kelly, P. Greenwood, Black in neuro, beyond one week. J. Neurosci. 41, 2314-2317 (2021).
T. J. VanderWeele, W. R. Robinson, On the causal interpretation of race in regressions adjusting for confounding and mediating variables. Epidemiology 25, 473-484 (2014).
I. Kohler-Hausmann, Eddie Murphy and the Dangers of Counterfactual Causal Thinking About Detecting Racial Discrimination. SSRN Electron. J. (2019), doi: 10.2139/ SSRN.3050650.
P. Liang, L. Shi, N. Chen, Y. Luo, X. Wang, K. Liu, V. C. T. Mok, W. C. W. Chu, D. Wang, K. Li, Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults. Sci. Rep. 5, 18216 (2016).
G. Yang, S. Zhou, J. Bozek, H. M. Dong, M. Han, X. N. Zuo, H. Liu, J. H. Gao, Sample sizes and population differences in brain template construction. NeuroImage 206, 116318 (2020).
A. Schaefer, R. Kong, E. M. Gordon, T. O. Laumann, X.-N. Zuo, A. J. Holmes, S. B. Eickhoff, B. T. T. Yeo, Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095-3114 (2018).
R. Kong, Q. Yang, E. Gordon, A. Xue, X. Yan, C. Orban, X.-N. Zuo, N. Spreng, T. Ge, A. Holmes, S. Eickhoff, B. T. T. Yeo, Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477-4500 (2021).
M. Salehi, A. S. Greene, A. Karbasi, X. Shen, D. Scheinost, R. T. Constable, There is no single functional atlas even for a single individual: Functional parcel definitions change with task. NeuroImage 208, 116366 (2020).
S. J. Gould, The Mismeasure of Man (W. W. Norton & Company, 1996).
J. B. Ritsher, E. L. Struening, F. Hellman, M. Guardino, Internal validity of an anxiety disorder screening instrument across five ethnic groups. Psychiatry Res. 111, 199, 213 (2002).
C. M. Berry, M. A. Clark, T. K. McClure, Racial/ethnic differences in the criterion-related validity of cognitive ability tests: A qualitative and quantitative review. J. Appl. Psychol. 96, 881-906 (2011).
M. M. Elbulok-Charcape, L. A. Rabin, A. T. Spadaccini, W. B. Barr, Trends in the neuropsychological assessment of ethnic/racial minorities: A survey of clinical neuropsychologists in the United States and Canada. Cult. Divers. Ethn. Minor. Psychol. 20, 353-361 (2014).
E. Dixon-Román, H. Everson, J. McArdle, Race, poverty and SAT scores: Modeling the influences of family income on black and white high school students' SAT performance. Teach. Coll. Rec. 115, 1-33 (2013).
C. Buchmann, D. J. Condron, V. J. Roscigno, Shadow education, American style: Test preparation, the SAT and college enrollment. Soc. Forces 89, 435-461 (2010).
M. Knoester, W. Au, Standardized testing and school segregation: Like tinder for fire?. Race Ethn. Educ. 20, 1-14 (2017).
D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. J. Behrens, E. Yacoub, K. Ugurbil, The WU-minn human connectome project: An overview. NeuroImage 80, 62-79 (2013).
N. D. Volkow, G. F. Koob, R. T. Croyle, D. W. Bianchi, J. A. Gordon, W. J. Koroshetz, E. J. Pérez-Stable, W. T. Riley, M. H. Bloch, K. Conway, B. G. Deeds, G. J. Dowling, S. Grant, K. D. Howlett, J. A. Matochik, G. D. Morgan, M. M. Murray, A. Noronha, C. Y. Spong, E. M. Wargo, K. R. Warren, S. R. B. Weiss, The conception of the ABCD study: From substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4-7 (2018).
H. Garavan, H. Bartsch, K. Conway, A. Decastro, R. Z. Goldstein, S. Heeringa, T. Jernigan, A. Potter, W. Thompson, D. Zahs, Recruiting the ABCD sample: Design considerations and procedures. Dev. Cogn. Neurosci. 32, 16-22 (2018).
S. M. Smith, C. F. Beckmann, J. Andersson, E. J. Auerbach, J. Bijsterbosch, G. Douaud, E. Duff, D. A. Feinberg, L. Griffanti, M. P. Harms, M. Kelly, T. Laumann, K. L. Miller, S. Moeller, S. Petersen, J. Power, G. Salimi-Khorshidi, A. Z. Snyder, A. T. Vu, M. W. Woolrich, J. Xu, E. Yacoub, K. Uǧurbil, D. van Essen, M. F. Glasser; WU-Minn HCP Consortium, Resting-state fMRI in the human connectome project. NeuroImage 80, 144-168 (2013).
D. M. Barch, G. C. Burgess, M. P. Harms, S. E. Petersen, B. L. Schlaggar, M. Corbetta, M. F. Glasser, S. Curtiss, S. Dixit, C. Feldt, D. Nolan, E. Bryant, T. Hartley, O. Footer, J. M. Bjork, R. Poldrack, S. Smith, H. Johansen-Berg, A. Z. Snyder, D. van Essen; WU-Minn HCP Consortium, Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage 80, 169-189 (2013).
B. J. Casey, T. Cannonier, M. I. Conley, A. O. Cohen, D. M. Barch, M. M. Heitzeg, M. E. Soules, T. Teslovich, D. V. Dellarco, H. Garavan, C. A. Orr, T. D. Wager, M. T. Banich, N. K. Speer, M. T. Sutherland, M. C. Riedel, A. S. Dick, J. M. Bjork, K. M. Thomas, B. Chaarani, M. H. Mejia, D. J. Hagler Jr., M. D. Cornejo, C. S. Sicat, M. P. Harms, N. U. F. Dosenbach, M. Rosenberg, E. Earl, H. Bartsch, R. Watts, J. R. Polimeni, J. M. Kuperman, D. A. Fair, A. M. Dale; ABCD Imaging Acquisition Workgroup, The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43-54 (2018).
M. Luciana, J. M. Bjork, B. J. Nagel, D. M. Barch, R. Gonzalez, S. J. Nixon, M. T. Banich, Adolescent neurocognitive development and impacts of substance use: Overview of the Adolescent Brain Cognitive Development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 32, 67-79 (2018).
D. M. Barch, M. D. Albaugh, S. Avenevoli, L. Chang, D. B. Clark, M. D. Glantz, J. J. Hudziak, T. L. Jernigan, S. F. Tapert, D. Yurgelun-Todd, N. Alia-Klein, A. S. Potter, M. P. Paulus, D. Prouty, R. A. Zucker, K. J. Sher, Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. Dev. Cogn. Neurosci. 32, 55-66 (2018).
J. Li, R. Kong, R. Liégeois, C. Orban, Y. Tan, N. Sun, A. J. Holmes, M. R. Sabuncu, T. Ge, B. T. T. Yeo, Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage 196, 126-141 (2019).
E. C. Robinson, S. Jbabdi, J. Andersson, S. Smith, M. F. Glasser, D. C. Van Essen, G. Burgess, M. P. Harms, D. M. Barch, M. Jenkinson, Multimodal surface matching: Fast and generalisable cortical registration using discrete optimisation, in International Conference on Information Processing in Medical Imaging (2013), LNCS, vol. 7917, pp. 475-486.
G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, S. M. Smith, Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage 90, 449-468 (2014).
M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson, B. Fischl, J. L. Andersson, J. Xu, S. Jbabdi, M. Webster, J. R. Polimeni, D. C. Van Essen, M. Jenkinson; WU-Minn HCP Consortium, The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105-124 (2013).
G. C. Burgess, S. Kandala, D. Nolan, T. O. Laumann, J. Power, B. Adeyemo, M. P. Harms, S. E. Petersen, D. M. Barch, Evaluation of denoising strategies to address motioncorrelated artifacts in resting-state functional magnetic resonance imaging data from the human connectome project. Brain Connect. 6, 669-680 (2016).
J. S. Siegel, A. Mitra, T. O. Laumann, B. A. Seitzman, M. Raichle, M. Corbetta, A. Z. Snyder, Data quality influences observed links between functional connectivity and behavior. Cereb. Cortex 27, 4492-4502 (2017).
M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825-841 (2002).
J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, S. E. Petersen, Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142-2154 (2012).
J. Chen, A. Tam, V. Kebets, C. Orban, L. Q. R. Ooi, S. Marek, N. Dosenbach, S. Eickhoff, D. Bzdok, A. Holmes, B. T. Thomas Yeo, Shared and unique brain network features predict cognition, personality and mental health in childhood. bioRxiv, 2020.06.24.168724 (2020).
D. J. Hagler Jr., S. N. Hatton, M. D. Cornejo, C. Makowski, D. A. Fair, A. S. Dick, M. T. Sutherland, B. J. Casey, D. M. Barch, M. P. Harms, R. Watts, J. M. Bjork, H. P. Garavan, L. Hilmer, C. J. Pung, C. S. Sicat, J. Kuperman, H. Bartsch, F. Xue, M. M. Heitzeg, A. R. Laird, T. T. Trinh, R. Gonzalez, S. F. Tapert, M. C. Riedel, L. M. Squeglia, L. W. Hyde, M. D. Rosenberg, E. A. Earl, K. D. Howlett, F. C. Baker, M. Soules, J. Diaz, O. R. de Leon, W. K. Thompson, M. C. Neale, M. Herting, E. R. Sowell, R. P. Alvarez, S. W. Hawes, M. Sanchez, J. Bodurka, F. J. Breslin, A. S. Morris, M. P. Paulus, W. K. Simmons, J. R. Polimeni, A. van der Kouwe, A. S. Nencka, K. M. Gray, C. Pierpaoli, J. A. Matochik, A. Noronha, W. M. Aklin, K. Conway, M. Glantz, E. Hoffman, R. Little, M. Lopez, V. Pariyadath, S. R. Weiss, D. L. Wolff-Hughes, R. Del Carmen-Wiggins, S. W. F. Ewing, O. Miranda-Dominguez, B. J. Nagel, A. J. Perrone, D. T. Sturgeon, A. Goldstone, A. Pfefferbaum, K. M. Pohl, D. Prouty, K. Uban, S. Y. Bookheimer, M. Dapretto, A. Galvan, K. Bagot, J. Giedd, M. A. Infante, J. Jacobus, K. Patrick, P. D. Shilling, R. Desikan, Y. Li, L. Sugrue, M. T. Banich, N. Friedman, J. K. Hewitt, C. Hopfer, J. Sakai, J. Tanabe, L. B. Cottler, S. J. Nixon, L. Chang, C. Cloak, T. Ernst, G. Reeves, D. N. Kennedy, S. Heeringa, S. Peltier, J. Schulenberg, C. Sripada, R. A. Zucker, W. G. Iacono, M. Luciana, F. J. Calabro, D. B. Clark, D. A. Lewis, B. Luna, C. Schirda, T. Brima, J. J. Foxe, E. G. Freedman, D. W. Mruzek, M. J. Mason, R. Huber, E. M. Glade, A. Prescot, P. F. Renshaw, D. A. Yurgelun-Todd, N. A. Allgaier, J. A. Dumas, M. Ivanova, A. Potter, P. Florsheim, C. Larson, K. Lisdahl, M. E. Charness, B. Fuemmeler, J. M. Hettema, H. H. Maes, J. Steinberg, A. P. Anokhin, P. Glaser, A. C. Heath, P. A. Madden, A. Baskin-Sommers, R. T. Constable, S. J. Grant, G. J. Dowling, S. A. Brown, T. L. Jernigan, A. M. Dale, Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage 202, 116091 (2019).
B. Fischl, FreeSurfer. NeuroImage 62, 774-781 (2012).
B. Fischl, M. I. Sereno, R. B. H. Tootell, A. M. Dale, High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272-284 (1999).
D. N. Greve, B. Fischl, Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63-72 (2009).
B. Fischl, M. I. Sereno, A. M. Dale, Cortical surface-based analysis. NeuroImage 9, 195-207 (1999).
J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, S. E. Petersen, Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320-341 (2014).
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, A. M. Dale, Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341-355 (2002).
H. W. Kuhn, The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83-97 (1955).
J. Munkres, Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32-38 (1957).
G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-Idrobo, Y. Schwartz, B. Thirion, Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. NeuroImage 145, 166-179 (2017).
K. P. Murphy, Machine Learning (MIT Press, 2012).
A. M. Winkler, M. A. Webster, D. Vidaurre, T. E. Nichols, S. M. Smith, Multi-level block permutation. NeuroImage 123, 253-268 (2015).
B. T. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. Polimeni, B. Fischl, H. Liu, R. L. Buckner, The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125-1165 (2011).