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N E U R O S C I E N C E

Cross-ethnicity/race generalization failure of behavioral 
prediction from resting-state functional connectivity
Jingwei Li1,2,3*, Danilo Bzdok4,5, Jianzhong Chen3, Angela Tam3, Leon Qi Rong Ooi3,  
Avram J. Holmes6,7, Tian Ge7,8,9, Kaustubh R. Patil1,2, Mbemba Jabbi10,11,12,13, Simon B. Eickhoff1,2,  
B. T. Thomas Yeo3,14*†, Sarah Genon1,2*†

Algorithmic biases that favor majority populations pose a key challenge to the application of machine learning for 
precision medicine. Here, we assessed such bias in prediction models of behavioral phenotypes from brain func-
tional magnetic resonance imaging. We examined the prediction bias using two independent datasets (pre-
adolescent versus adult) of mixed ethnic/racial composition. When predictive models were trained on data 
dominated by white Americans (WA), out-of-sample prediction errors were generally higher for African Americans 
(AA) than for WA. This bias toward WA corresponds to more WA-like brain-behavior association patterns learned 
by the models. When models were trained on AA only, compared to training only on WA or an equal number of AA 
and WA participants, AA prediction accuracy improved but stayed below that for WA. Overall, the results point to 
the need for caution and further research regarding the application of current brain-behavior prediction models in 
minority populations.

INTRODUCTION
Predictive models, capitalizing on machine learning algorithms, are 
expected to play an important role in precision medicine (1–3). 
Benefits of their application have already been demonstrated for 
disease diagnostics, drug sensitivity prediction, and biomarker dis-
covery in multiple studies. For example, a machine learning model 
was designed to identify drug-sensitive molecular markers for acute 
myeloid leukemia (4), and deep learning has been used to detect 
diabetic retinopathy (5). Furthermore, several machine learning–based 
cardiometabolic biomarkers have been shown to be better at predict-
ing diabetes than traditional clinical biomarkers (6). Thus, the future 
of precision medicine, from disease prevention to diagnostics and 
treatment, will likely be shaped by the deployment of machine learning–
based models for individual prediction. From the neuroscience 
perspective, applying machine learning–based models on neuro-
imaging data and cognitive/psychometric phenotypes can po-
tentially facilitate better diagnostics and treatment of mental 

disorders, allowing for patient clustering and outcome prediction, 
while improving our understanding of individual differences in brain 
and behavior.

However, despite the promise of predictive modeling approaches, 
concerns have been raised that machine learning algorithms and 
related data mining techniques might not alleviate but rather increase 
bias and hence unfairness against specific subpopulations (7–9). For 
instance, many commercial gender classification systems exhibited 
higher prediction error rate for darker-skinned females than for lighter- 
skinned males (10). In more sensitive applications, model unfairness 
could create marked consequences for specific groups, e.g., higher 
predicted crime rate than actual rate or lower expected health care 
investment than necessary. Several reasons could jointly lead to such 
unfairness (11): (i) an insufficient representation of minority groups 
in the data on which the model is built, (ii) the predictive models fit-
ting more to majority groups during training optimization, and (iii) 
historical societal bias in the data (i.e., machine learning models may 
learn from previous discrimination/bias caused by societal reasons, 
e.g., gender inequality in indices of professional success).

In the face of this complex, multicausal issue, research on algo-
rithmic fairness has rapidly evolved over the recent years. The main 
and ultimate objective is to align algorithmic systems with broader 
societal goals across social, ethical, and legal contexts. However, under 
different application scenarios, the concept of “fairness” pertains to 
different aspects. This heterogeneity leads to diverse strategies to 
promote fairness in different fields of algorithm application (12). For 
example, independence of a sensitive attribute (such as demographic 
disparity) on model predictions (13) might be considered in a school 
admission process to ensure that students with different socioeconomic 
backgrounds receive the same education opportunity. If a model that 
systematically underestimates outcomes for an unprivileged group 
could be harmful (e.g., lower true-positive rate to detect a disease in a 
minority ethnic group), equalized sensitivity should be implemented 
to correct this bias (14, 15). Similar strategies for different fairness 
objectives include equalized odds (14), calibration-based criteria (16), 
and net compensation (17). Given ongoing debates, not only in science 
but also in humanities, there might not be a solution that would satisfy all 
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conceivable, at times mutually incompatible, aspects of fairness 
within every usage context (15). It has also been raised that simply 
considering algorithmic fairness per se is not enough. Rather, model 
developers also need to collaborate with the stakeholders, such as 
patient advocacy groups for health care applications. Such collabora-
tions contribute, for example, to identify possible bias in data collec-
tion (12).

In neuroscience, one major line of research aims to predict behav-
ioral phenotype from brain data, in particular using resting- state/
task/naturalistic functional magnetic resonance imaging (fMRI) 
(18–22). In that context, the prevalent predictive models have been 
mostly trained on datasets mixing multiple ethnicities/races. Howev-
er, little or no attention has been given to the cross-ethnicity/race 
fairness of these predictive models while the datasets were usually 
dominated by participants with European ancestry and/or white 
ethnic/racial background (23, 24). Given the recent reports of bias to-
ward specific populations in machine learning, the question can be 
raised whether brain-based prediction models can perform as well for 
minority ethnic/racial groups as for the majority population. Al-
though emerging efforts have been made to build machine learning 
models on specific non-white/European populations, e.g., Chinese 
population (25), comparisons of prediction across ethnicities/races 
are still lacking. A wide range of socioeconomical, cultural, educa-
tional, and biological variables can individually, or in interaction, 
complicate the identification of a common pattern of brain-behavior 
associations across different populations (26–28).

The assessment and characterization of unfair discrepancies in 
the prediction of behavioral phenotypes should be of particular 
importance to the field. While still in its inception, brain-based pre-
dictive approaches of behavioral phenotypes have the potential to 
contribute to our understanding of brain-behavior relationships in 
humans. These approaches should ultimately lead to the develop-
ment of new clinical biomarkers and the prediction of individual 
treatment trajectories and hence spur progresses in precision medicine. 
In this context, unfairness issues in brain-based prediction of pheno-
typic variability could increase the impacts of structural racism and 
negatively affect patient care.

In the present study, we investigated how predictive models of 
behavioral phenotypes from resting-state functional connectivity 
(RSFC) data generalized across populations. RSFC-based models were 
used in this study for both conceptual and practical reasons. First, 
from a conceptual standpoint, behavioral functions are supported by 
distributed functional networks. Accordingly, most brain-based pre-
diction studies have been based on, or at least included, RSFC (rather 
than brain structural features) as brain predicting features. Thus, by 
focusing on RSFC, the current study reflects the contemporary scope 
of the brain-based prediction field. Second, compared to task-based 
fMRI, using resting-state fMRI (rs-fMRI) data has two advantages: 
(i) From a clinical perspective, resting-state data are more readily 
collected, especially in children, patients with cognitive impairment, 
and in elderly people. (ii) From a practical standpoint, the current 
study requires optimizing (i.e., maximizing) the sample size (in par-
ticular for minorities) and hence benefitted from the greater data 
availability for resting-state data as compared to task fMRI data. 
More specifically, we examined whether white Americans (WA) and 
African Americans (AA) enjoyed similar prediction performance 
when the predictive models were trained on state-of-the-art large-
scale datasets. The terminology of ethnicities/races in this study 
followed the National Institutes of Health definitions of racial and 

ethnic categories (https://grants.nih.gov/grants/guide/notice-files/
not-od-15-089.html).

We used two publicly available large datasets of the U.S. population 
to ensure that our findings were not specific to a specific age range, 
scanning process (single versus multisite), and preprocessing strategy. 
Likewise, by focusing on U.S. data, we avoided influences arising 
from comparisons across different cultural societies, including school 
and health care systems, food preferences, and other factors, although 
we note that these may also exist within the United States. Behavioral 
predictive models were built using the kernel ridge regression 
method. We first compared the prediction accuracy, measured by 
predictive coefficient of determination (COD), between phenotypi-
cally matched WA and AA, when models were trained on the entire 
sample (mixing all ethnic/racial groups, not only AA and WA). The 
objective of this training on diverse populations was to mimic the 
dominating approach currently taken in the field for building predic-
tive models.

To evaluate model accuracy in regression problems in a fairness 
framework, previous studies have used COD (17, 29), mean squared 
error (MSE) (30), or the loss of their optimization function as accura-
cy metrics (31). Using MSE and loss of cost function in this study 
would have resulted in discrepant scales for different behavioral 
phenotypes. Noting that, mathematically, predictive COD and MSE 
are inversely related (see the last section of Results for further infor-
mation), we here opted for the former. Nevertheless, because 
correlation has been and is still often used for evaluating model per-
formance within the brain-based prediction field, we repeated all 
analyses using Pearson’s correlation as an accuracy metric.

Because an important source of the unfairness in machine learning 
algorithms may arise from insufficient representation in the training 
set for minority populations, we further investigated the effects of 
training population on the differences in test accuracies between AA 
and WA. Specifically, we compared predictive models trained on AA 
only, on WA only, or on a perfectly balanced (half AA–half WA) set. 
Last, we also investigated potential mechanisms underlying differ-
ent model performance for AA and WA. It can hence be assumed 
that good performance of a predictive model in one population goes 
hand in hand with the learning of a valid representation of the asso-
ciation between features and target variables from the model in that 
specific population. Thus, we here also examined the relationship be-
tween the prediction accuracy in a certain ethnic/racial group and how 
well the predictive model captured the brain-behavior association pat-
terns in that group.

RESULTS
Full-dataset model (kernel ridge regression) yielded higher 
prediction error in AA than in WA
We used two large-scale datasets containing both neuroimaging and 
behavioral data from the U.S. population: the Human Connectome Proj-
ect (HCP; N = 948; age, 22 to 37 years) and the Adolescent Brain 
Cognitive Development (ABCD; N = 5351; age, 9 to 11 years). Each 
dataset included various reported ethnicities/races, but they were 
both heavily dominated in numbers by WA (Fig. 1, A and B). Ethnic/
racial groups were categorized on the basis of self-reported data. 
Kernel ridge regression models were trained on the entire datasets 
including all ethnic/racial groups to predict each behavioral measure 
from RSFC, with accuracy being assessed by state-of-the-art cross- 
validation procedures. While determining an optimal algorithm for 

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 07, 2022

https://grants.nih.gov/grants/guide/notice-files/not-od-15-089.html
https://grants.nih.gov/grants/guide/notice-files/not-od-15-089.html


Li et al., Sci. Adv. 8, eabj1812 (2022)     16 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 19

MRI-based behavioral prediction was still an undergoing research 
topic, kernel ridge regression was selected as the main prediction 
algorithm in this work because it has been shown to be a fast and 
effective method for predicting phenotypes from fMRI (32). How-
ever, our main analyses were also repeated using linear ridge re-
gression (see below). Confounding variables were regressed from 
both RSFC and behavioral scores (see Materials and Methods). First, 
as a main analysis, predictive model performance was compared be-
tween matched test sets of AA and WA using predictive COD 
[as recommended in (33)]. The purpose of matching between AA 
and WA was to exclude potential accuracy differences that would be 
attributable to differences in basic demographic/anthropometric/
data quality variables (such as age, gender, and in-scanner move-
ments) between the two groups rather than to ethnicity/race.
HCP dataset
For the HCP dataset, first, AA participants were randomly split into 
10 folds (Fig. 2A). Within each fold of AA, Hungarian matching was 
performed to assign a WA participant (without repetition) to each 
individual AA so that the differences between the matched AA and 
WA in behavioral scores and confounding variables were minimized. 
Predictive models were trained on nine folds and tested on the re-
maining fold in a cross-validated manner. Following the dominating 
approach to build predictive models in this field, which usually 
mixed all ethnic/racial groups in a dataset, the matched AA and WA 
from training folds were grouped with 90% of randomly selected par-
ticipants from other ethnic/racial groups and the unmatched WA 
and AA. The whole procedure was repeated randomly 40 times to 
ensure that the results were not driven by the initial split of folds. For 
51 of the total 58 behavioral measures, AA and WA could be matched 
(fig. S1). See Materials and Methods for more details.

Among those 51 measures, 6 were significantly predictable (see 
Materials and Methods) and achieved a mean Pearson’s correlation 
of >0.15 between the predicted and true behavioral scores across all 
test participants, including every ethnic/racial group. The correla-
tion accuracies on the entire test sets can be found in fig. S3A. Among 
these six behavioral measures, five showed significantly larger pre-
dictive COD in WA than AA: spatial orientation, grip strength, 
reading (pronunciation), cognitive flexibility (Dimensional Change 
Card Sort), and openness [Neuroticism/Extroversion/Openness Five 
Factor Inventory (NEO)] (Fig. 3A). The false discovery rate (FDR) 
was controlled at 5% across the six behavioral measures to correct for 
multiple comparisons. Considering all 51 behavioral measures, i.e., 
also those that did not show a significant prediction in both groups, 
42 of them showed significantly larger predictive COD in matched 
WA than in AA (fig. S4A). No behavioral measure exhibited signifi-
cantly lower predictive COD in WA than AA.

Next, we looked into the direction of prediction errors of AA and 
WA for each behavioral measure separately (fig. S6A). A wider range 
of the difference between predicted and original behavioral scores in 
WA than AA was observed due to the fact that different sets of WA 
were selected to match the same set of AA across 40 random repeti-
tions of splits. This complicated the examination of differences between 
the two populations in HCP. Considering this limitation, overall, some 
behavioral scores were more overpredicted (i.e., predicted higher 
than actual) in AA than WA—particularly visual episodic memory, 
sustained attention, cognitive status [Mini Mental State Examination 
(MMSE)], arithmetic, four of the NEO Big Five measures (except 
conscientiousness), fear, sadness, positive affect, and two social sup-
port measures—while other scores were more underpredicted (i.e., 
predicted lower than actual) in AA than WA, namely, grip strength, 
taste intensity, anger—aggression, conscientiousness (NEO), and 
perceived rejection.
ABCD dataset
For the ABCD dataset, because of the large discrepancy of sample 
size across sites, we used the following data matching and split proce-
dures (Fig. 2B). First, within each site, Hungarian matching was per-
formed to select AA and WA pairs that had minimal differences in 
confounding variables and behavioral scores. Second, sites were 
combined into 10 sets, based on a balanced number of matched 
AA-WA pairs across the 10 sets, to achieve similar test sample sizes 
during cross-validation. Last, for each cross-validation iteration, 7 
of the 10 sets were chosen as the training set and the remaining 3 
folds were chosen as the test set. The behavioral distributions of 
matched AA and WA can be found in fig. S2.

Nine of the 36 behavioral variables showed predictability and 
achieved >0.15 correlation accuracy across the whole test set (Fig. 3B 
and fig. S3B). Four behavioral measures exhibited significantly 
higher predictive COD in WA than AA: crystallized cognition, 
working memory (list sort), picture vocabulary, and executive func-
tion (card sort) (FDR controlled at 5% across the nine behavioral 
measures). On the contrary, only matrix reasoning showed signifi-
cantly lower predictive COD in WA than AA. When all 36 behavioral 
measures were considered, 25 of them showed significant predictive 
COD difference between the matched WA and AA (fig. S4B). Twenty of 
the 25 behavioral measures exhibited higher predictive COD in 
WA. In comparison, the other five measures [visual episodic memory, 
anxious/depressed feelings, matrix reasoning, somatic complaints, 
and Behavioral activation system (BAS)—reward responsiveness] 
exhibited higher predictive COD in AA.

Fig. 1. Ethnic/racial composition in our datasets and the brain atlases used for 
RSFC calculation. Subpopulation composition of (A) HCP and (B) ABCD and func-
tional connectivity ROIs. Note that the naming of ethnic/racial categories in (B) 
followed the definition given by the ABCD consortium (68), which was slightly 
different from the National Institutes of Health definition. (C) The 400-area cortical 
parcellation derived by Schaefer et al. (56). Parcel colors correspond to 17 large-scale 
networks (95). (D) Nineteen subcortical ROIs from Deskian/Killiany atlas (89).
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Overall, cognitive scores were more underpredicted in AA com-
pared to WA in this dataset (fig. S6B), e.g., short-/long-delay recall, 
cognitive control/attention (flanker), working memory (list sort), execu-
tive function (card sort), crystallized cognition, and overall cognition. 
In contrast, psychometric scores such as somatic complaints, social prob-
lems, rule-breaking behavior, aggressive behavior, positive urgency, and 
behavioral inhibition tended to be more overpredicted in AA than WA.

Full-dataset model (linear ridge regression) yielded higher 
prediction error in AA than in WA
To ensure that the larger prediction error in AA than WA was not 
algorithm specific, we used linear ridge regression as a complemen-
tary method to corroborate the main findings. In the HCP dataset, 
seven behavioral measures were predictable and achieved >0.15 

correlation accuracy across the whole test set (Fig.  3C). All seven 
measures showed significantly higher predictive COD in WA than 
AA (e.g., anger—aggression and spatial orientation). Across all 51 
behavioral measures, 44 measures exhibited significantly larger pre-
dictive COD in WA than AA (fig. S6A). For the remaining seven 
measures {e.g., sleep quality [Pittsburgh Sleep Quality Index (PSQI)] 
and inhibition (flanker task)}, no significant difference in test predic-
tive COD was found between AA and WA.

In the ABCD dataset, seven behavioral measures were predictable 
and achieved >0.15 correlation accuracy across the whole test set 
(Fig. 3D). Four of these seven measures showed significantly larger 
predictive COD in WA than AA: picture vocabulary, working memory 
(list sort), matrix reasoning, and crystallized cognition. The remaining 
three measures did not show any significant difference. Among all 36 

Fig. 2. Procedures for data splitting and the matching between WA and AA. (A) HCP dataset. (B) ABCD dataset.
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behavioral measures, 23 measures exhibited significantly larger predic-
tive COD in WA than AA, e.g., visuospatial reaction time (fig. S6B). 
Only total prodromal psychosis symptoms showed significantly low-
er predictive COD in WA than AA.

In general, the overall prediction accuracy and the difference be-
tween AA and WA were replicated using linear ridge regression 
(compared to using kernel ridge regression). For the following anal-
yses, we focused on kernel ridge regression.

Effects of confound regression on prediction error bias
As different distribution of confounding variables across ethnic/
racial groups might influence the observed differences between WA 
and AA in prediction results in an unexpected way, we further com-
pared the prediction accuracy between AA and WA without confound 
regression. In the HCP dataset, 15 behavioral measures showed pre-
dictability and achieved >0.15 correlation accuracy across all test 
participants (Fig. 4A). For 12 of these 15 measures, predictive COD 
was significantly higher in WA than AA, e.g., anger—aggression 
and reading (pronunciation). For the remaining three measures 
[working memory (list sorting), sleep quality (PSQI), and inhibition 
(flanker task)], difference in predictive COD between AA and WA 
was not significant. Among a total of 51 behavioral measures, 45 

measures exhibited significantly larger predictive COD in WA than 
AA, e.g., contrast sensitivity and social cognition—interaction (fig. S7).

In the ABCD dataset, there were also 15 behavioral measures that 
were predictable and with >0.15 correlation accuracy across the 
whole test set (Fig. 4B). Six behavioral measures showed significantly 
higher predictive COD in WA than AA, e.g., cognitive control/
attention (flanker) and working memory (list sort). In contrast, 
three behavioral measures exhibited significantly lower predictive 
COD in WA than AA: visual episodic memory, matrix reasoning, 
and overall cognition. Among all 36 behavioral measures, 20 of them 
showed significantly larger predictive COD in WA than AA, e.g., vi-
suospatial reaction time and social problems (fig. S7). On the con-
trary, seven measures showed higher predictive COD in AA than 
WA, e.g., visual episodic memory and anxious/depressed.

In summary, without confound regression, as expected, predic-
tion accuracy was generally higher than that with confound re-
gression. Hence, more behavioral measures were included in Fig. 4 
compared to Fig. 3, regardless of whether the predictive COD was 
different between AA and WA. Overall, however, the set of be-
havioral measures showing significant differences in prediction 
error (independently of direction) largely overlapped, and our general 
finding of better-performing models in WA remained.

Fig. 3. The prediction error is larger (i.e., lower predictive COD) in AA than matched WA in the HCP dataset (left) and the ABCD dataset (right). Each violin plot 
shows the various predictive COD across 40 data splits in (A) and (C) and across 120 training-test splits in (B) and (D). Blue and green violins represent AA and WA, respec-
tively. Red violins are the difference. Gray violins show the null distribution of difference generated by flipping the AA versus WA labels. Asterisk indicates that the differ-
ence in predictive COD between matched AA and WA is significant (FDR controlled at q = 5%). Gray dashed line indicates 0.
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Training the model specifically on AA increases its 
performance for this population
Since the full datasets were dominated by WA participants, an intui-
tive solution to obtain a more valid predictive model for a specific 
minority group, for which insufficient generalizability was observed, 
would be to perform the training on this minority. Using the ABCD 
dataset, we trained kernel ridge regression on all AA participants. As 
a comparison, kernel ridge regression was also trained on the same 
number of randomly selected WA participants, as well as on an equal 
number of AA and (randomly selected) WA participants. These 
three types of models were then tested on matched AA and WA sep-
arately as above. This analysis could not be conducted for the HCP 
dataset because the number of AA in HCP was insufficient for build-
ing reliable predictive models.

For the model trained solely on AA, 19 of the 36 behavioral mea-
sures showed significantly higher predictive COD when this model 
was tested on matched WA than when tested on matched AA 
(Fig. 5A). Conversely, the AA-trained model achieved higher pre-
dictive COD in AA than WA for eight behavioral measures. No 
significant difference was observed for nine behavioral measures. In 
contrast, for the model trained solely on the same number of random 
WA, higher predictive COD in WA than AA was observed for 
26 behavioral measures. Last, the WA-trained model only per-
formed better, in terms of predictive COD, in AA than WA for two 

behavioral measures. Differences in predictive COD between AA 
and WA were not significant for eight behavioral measures using 
the WA-trained model. A detailed list of behavioral measures for 
which significant and nonsignificant differences were observed is 
reported for the different approaches in Table 1.

The model trained on equal numbers of AA and WA resulted in 
AA-WA accuracy differences that were in between the former two 
modeling approaches (AA only and WA only). Specifically, 24 be-
havioral variables exhibited higher predictive COD in WA than AA, 
and 5 behavioral measures showed lower predictive COD in WA than 
AA. Overall, this suggested that strategies on training population could 
ameliorate but not eliminate the accuracy difference between the two 
groups. More concretely, training on AA improved the out-of-sample 
accuracy of AA, compared to training on a WA sample or a balanced 
mixed population [e.g., for picture vocabulary, working memory 
(list sort), overall cognition, fluid cognition, short- delay recall, 
long-delay recall, BAS—reward responsiveness, and visual episodic 
memory].

Different brain-behavior associations learned from AA only 
versus from WA only
Given the different performance of prediction models trained on dif-
ferent subpopulations, we investigated more deeply on whether these 
models learned different associations between RSFC and behavioral data. 

Fig. 4. Predictive COD of AA and WA when no confounding variable was regressed during model building. (A) HCP dataset. Each violin plot shows the various 
predictive COD across 40 data splits. (B) ABCD dataset. Each violin plot shows the various predictive COD across 120 training-test splits. Blue and green violins represent 
AA and WA, respectively. Red violins show the difference. Gray violins show the null distribution of difference generated by flipping the AA versus WA labels. Asterisk in-
dicates that the difference in predictive COD between matched AA and WA is significant (FDR controlled at 5%). Gray dashed line indicates 0.
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We quantified the brain-behavior association learned by the models 
as the covariance between the predicted behavioral scores and the 
RSFC between each pair of brain regions across the training partici-
pants (34). Overall, although similar patterns of model- learned 
brain-behavior associations could be observed by training only on 
AA versus training only on WA, broad patterns of discrepancies 
could easily be seen (figs. S8 and S9). For example, models trained on 
AA only learned negative associations between visual A–limbic B 
RSFC and behavioral measures including short-delay recall, long- 
delay recall, processing speed, visual episodic memory, fluid cogni-
tion, and overall cognition. However, this pattern did not appear 
when models were trained on WA only. For short- delay re-
call and long-delay recall, the WA-trained models even learned 
positive relationship between this RSFC feature and behavioral 
scores. Another example of discrepancy can be observed in fig. S9. 
For most behavioral measures in this figure (e.g., processing 
speed), a relatively strong positive association between the RSFC of 
the somatomotor network and behavioral scores was observed for 
the models trained only on WA, while this pattern was much 
weaker for the models trained on AA. For measures such as visual 
episodic memory and visuospatial accuracy, models trained on 
WA learned much simpler, focused patterns of brain-behavior 
negative association, compared to the models trained on AA.  
Although further investigations are needed to explain these different 
patterns of brain-behavior association learned from AA and WA, 
the current findings provided some insights on the different pre-
diction accuracy biases of models trained on different ethnic/
racial groups.

More similar model-learned versus true brain-behavior 
associations in the higher-accuracy group
Coming back to the original models trained on the sample mixing all 
ethnic/racial groups, an important question raised by the differences 
in model accuracy pertains to the validity of the learned brain- 
behavior associations. Concretely, we investigated whether the 
prediction model learned more valid representations of brain- 
behavior association (i.e., the learned associations being better 
corresponding to the true one) for the subpopulation with higher 
accuracy than the other one. Similar to the previous section, model- 
learned brain-behavior association was calculated, but, here, for the 
full-dataset models, while the true brain-behavior association was 
defined as the covariance between the true behavioral scores and 
each element of the RSFC matrix across test participants. The simi-
larity between the model-learned and true brain-behavior associa-
tion across all region-to-region pairs in AA and WA separately was 
then computed as Pearson’s correlation.

Overall, behavioral measures showing more similar model- 
learned versus actual brain-behavior association patterns in one ethnic/
racial group than the other tended to have greater accuracy in the 
former group as illustrated in Fig. 5 (B and C). In this figure, higher 
value on the horizontal axis means that model-learned brain- 
behavior association was more similar to the true brain- behavior as-
sociation in WA than AA [i.e., similarity(model-learned association 
patterns versus true patterns in WA) − similarity(model- learned as-
sociation patterns versus true patterns in AA)]. The vertical axis rep-
resents how much the predictive COD of WA exceeded that of AA. A 
positive, although weak, relationship between the two measures 

Fig. 5. Extended analyses. (A) Impact of training population for behavioral prediction model. The influence of training population was evaluated using predictive 
COD. Each bar corresponds to one of three types of prediction models: (i) trained on AA only, (ii) trained on the same number of random WA, and (iii) trained on both. For 
each model, the number of behavioral measures with better performance in WA than AA is indicated by the length of the navy blue bar, while the mint color represents 
the number of behavioral variables with better performance in AA than WA. The gray color represents the number of behavioral variables not showing significant differ-
ence in test accuracies between AA and WA. (B and C) For full-dataset models (when models were trained on the entire dataset), plot AA versus WA accuracy difference 
(predictive COD; vertical axis) against the difference in similarity between model-learned brain-behavior association patterns and true groupwise brain-behavior association 
patterns (horizontal axis). Each red dot represents a behavioral measure.
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across all behavioral variables was observed in both datasets. This 
suggests that the model tended to learn brain-behavior association 
patterns that were more valid for the subpopulation with the higher 
prediction accuracy (in most cases, it was WA).

Consistency/inconsistency across prediction accuracy metrics
In previous sections, we focused on the accuracy as assessed with the 
predictive COD. In this study, the lower predictive COD of a specific 
group (e.g., AA) indicated the larger deviation of predicted behavior-
al scores from the true behavioral scores of the same group (i.e., 
MSE), by a factor of the respective true behavioral variance in the 
training set (see Materials and Methods). Since Pearson’s correlation 
has been and is still frequently used for evaluating the performance of 
brain-behavior predictive models (18, 35–37), we also repeated our 
analyses with Pearson’s correlation as a prediction accuracy metric. 
While predictive COD quantifies the individual differences be-
tween the predicted and observed values, Pearson’s correlation fo-
cused on the overall linear relationship between predicted and 
observed behavioral scores (i.e., co-increase/decrease of predicted 
and true behavioral scores).

First, we compared the out-of-sample correlation accuracy between 
AA and WA, when predictive models were trained on the entire 
datasets (fig. S10). Overall, most of the predictable behavioral mea-
sures (yellow text color in the figures) exhibited higher correlation 
accuracy in WA than in AA, although some behavioral measures 
showed the opposite pattern, including grip strength in the HCP 
dataset and visual episodic memory, long-delay recall, and matrix 
reasoning in the ABCD dataset. When considering the whole range 
of 51 behavioral measures in the HCP data and the 36 behavioral 

measures in the ABCD data, a pattern of higher predictive COD in 
WA than in AA but with lower correlation accuracy in the former 
than the latter was observed for several variables (fig. S4 versus S10).

To further explore the possible reasons for the discrepancies be-
tween the two metrics, we examined the scatterplots of predicted 
scores against true scores for the behavioral variables showing incon-
sistency between the two metrics (Fig. 6). First, one should note that 
the calculation of the predictive COD is based on a common be-
havioral variance shared across AA and WA, assuming that the 
behavioral variance should not be group-specific (see Materials and 
Methods). Hence, predictive COD and MSE formed an inverse rela-
tionship, i.e., the larger the MSE, the smaller the predictive COD. In re-
ality, we observed larger behavioral variance in AA than in WA for 
some behavioral measure (Fig. 6, A, C, and E). In the HCP dataset, dif-
ferent variances of true behavioral scores between the matched AA 
and WA were observed by conducting Levene’s test (FDR controlled 
at 5%) for cognitive status (MMSE), social cognition—random, social 
cognition—interaction, emotion recognition—happy, anger—affect, 
anger—hostility, anger—aggression, fear—affect, positive affect, lone-
liness, perceived rejection, emotional support, and instrument 
support. In the ABCD dataset, although the variances differed nu-
merically, these differences were not significant using Levene’s test 
(FDR controlled at 5%). The larger behavioral variance in AA could 
lead to higher MSE for AA than WA, i.e., lower predictive COD for 
AA than WA. Second, we observed a larger overall prediction shift 
(i.e., the deviation of average predicted behavioral score from average 
true behavioral score) in AA than in WA for some behavioral mea-
sures (Fig. 6, B, D, and F). In other words, a systematic bias appears 
in the prediction of AA, with the predicted behavioral scores being 

Table 1. List of behavioral measures with better prediction in WA, with better prediction in AA, or without significant difference in prediction between 
WA and AA, for the models trained only on AA and only on WA.  

Predictive COD: WA > AA Predictive COD: WA < AA No significant difference

Model trained only on AA •Visuospatial reaction time •Short-delay recall •Visual episodic memory

•Reading (pronunciation) •Total prodromal psychosis symptoms •BAS—fun seeking

•Visuospatial efficiency •Anxious/depressed •Executive function (card sort)

•Thought problems •Rule-breaking behavior •BAS—drive

•Social problems •Somatic complaints •Withdraw/depressed

•Behavioral inhibition •Long-delay recall •Visuospatial accuracy

•Mania •Attention problems •Prodromal psychosis severity

•Matrix reasoning •BAS—reward responsiveness •Processing speed

•Aggressive behavior •Picture vocabulary

•Crystallized cognition

•Positive urgency

•Fluid cognition

•Cognitive control/attention (flanker)

•Lack of perseverance

•Lack of planning

•Sensation seeking

•Working memory (list sort)

•Overall cognition

•Negative urgency

continued on next page

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 07, 2022



Li et al., Sci. Adv. 8, eabj1812 (2022)     16 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 19

consistently lower or higher than the true behavioral scores, to a 
larger extent than in WA. The larger prediction shift of AA would 
also lead to higher MSE and thus lower predictive COD. However, 
such prediction shifts/systematic prediction bias in AA are not cap-
tured by the correlation between the predicted and true scores, 
yielding higher correlation accuracy in AA than in WA. In the HCP 
dataset, 13 behavioral measures showed inconsistent conclusions 
across the two accuracy metrics. Six of them exhibited a larger pre-
diction shift in AA than in WA. Within these six behavioral mea-
sures, grip strength and anger—aggression showed a more negative 
prediction shift in AA than in WA, while for the remaining four 
measures (sustained attention—Specificity, social cognition—random, 
positive affect, and emotional support), the predicted behavioral 
scores of AA were more positively shifted than those of WA. In the 
ABCD dataset, attention problems, prodromal psychosis severity, 
mania, thought problems, and BAS—drive showed inconsistent re-
sults across the two accuracy metrics. Prodromal psychosis severity, 
mania, and BAS—drive exhibited a larger prediction shift in AA 
than in WA. For all these three measures, AA’s scores were more 
overpredicted compared to WA. In summary, larger behavioral 
variance and a pattern of prediction shift/systematic prediction bias 
in AA can lead to higher prediction errors in AA captured by pre-
dictive COD but not by the correlation metric.

Beyond these observations, follow-up analyses using Pearson’s 
correlation corroborated the observations reported in the previous 
section. Overall, our findings on how altering training population 
influences the model performance difference between AA and WA 
were replicated (fig. S11A). Furthermore, better prediction perform-
ance in one ethnic/racial group than the other, as measured by 
Pearson’s correlation, was also related to the higher validity of the 
model-learned brain-behavior association patterns for the former 
group in the ABCD dataset (fig. S11, B and C).

DISCUSSION
The prediction of behavioral phenotypes from brain imaging data, 
especially from fMRI data, is a topic currently undergoing intense 
study as it holds high promise for applications in cognitive and clin-
ical neuroscience (18, 38, 39). With potential successful predictive 
models in the future, the association of brain functional organiza-
tion with behavioral phenotypes could be understood at the indi-
vidual level rather than at the group level. It will also contribute to 
the development of markers for preventing, diagnosing, and treating 
mental disorders. However, successful predictive methods should 
not only achieve overall high accuracy but also have an equal level 
of validity for different (sub-) populations. Given the fact that most 

Predictive COD: WA > AA Predictive COD: WA < AA No significant difference

Model trained only on WA •Picture vocabulary •Total prodromal psychosis symptoms •Somatic complaints

•Working memory (list sort)

•Visuospatial reaction time •Attention problems

•Reading (pronunciation)

•Crystallized cognition •Executive function (card sort)

•BAS—drive

•Aggressive behavior •Fluid cognition

•Overall cognition

•Visuospatial efficiency •Mania

•Thought problems

•Sensation seeking •Rule-breaking behavior

•Withdrawn/depressed

•Behavioral inhibition •Processing speed

•Matrix reasoning •Anxious/depressed

•Cognitive control/attention (flanker) •Prodromal psychosis severity

•Lack of perseverance

•Social problems

•Long-delay recall

•Short-delay recall

•Negative urgency

•BAS—reward responsiveness

•Visuospatial accuracy

•Lack of planning

•Positive urgency

•Visual episodic memory

•BAS—fun seeking
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of the recent research on behavioral prediction focused on datasets 
largely formed by the white population, we raised the question 
whether the models trained on such samples could perform equally 
well on other ethnicities/races compared to white populations. To 
answer this question, we examined the difference in prediction 

performance between white/European Americans and AA of models 
trained on a mixture of multiple ethnicities/races, following the 
dominant approach currently taken in the field. Our study was 
performed on two high-quality large-scale datasets, which had dif-
ferent age ranges, scanning protocols, and preprocessing strategies. 

Fig. 6. Scatterplots of predicted scores against true behavioral scores for the behavioral measures with inconsistent conclusion drawn from predictive COD and 
Pearson’s correlation. For each behavioral measure, a representative data split is shown (A to F). Each blue or green dot represents one AA or WA test participant, respec-
tively. The numbers reported in blue color correspond to AA, while the green ones correspond to WA. Behavioral variance refers to the variance of the true behavioral 
score. Prediction shift was calculated as the square of the mean difference between true and predicted scores.
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Therefore, the issues pertaining to model generalizability appear 
replicable and independent of the dataset.

In summary, we observed significantly lower predictive COD 
(hence larger prediction error) in AA than in WA for most behavioral 
measures, using two types of machine learning algorithms, when 
the models were trained on the entire datasets, i.e., a training set 
including all ethnicities/races but dominated by individuals of 
European ancestry. When the models were trained solely on AA, 
the test AA participants enjoyed better accuracies, compared to the 
models trained on the same number of WA or on a mixed but balanced 
samples of AA and WA. Nevertheless, training the model specifi-
cally on AA did not eliminate the accuracy differences between 
AA and WA.

Technical choices and their related potential limitations
All aforementioned results were tested on matched AA and WA for 
a diverse set of variables. Matching is necessary to control for a dif-
ferent data structure in a different population on the prediction 
accuracy (for example, different range for the target variable in dif-
ferent populations). However, given the covariation of ethnicities/
races and demographic, morphologic, or psychometric measures, 
some participants were omitted during matching. For example, be-
cause of societal reasons, AA tended to receive fewer years of educa-
tion than WA. After matching, poorly educated AA and extremely 
educated WA were not considered for the latter comparison. While 
necessary for the current investigation, we note that this approach 
may limit the generalizability of any model in the case of strong and 
true stratification by confounds (40). That is, if the distribution of a 
confound is largely nonoverlapping, focusing on only the low and 
high end, respectively, will not be representative of the underlying 
population. Challenges raised by such systematic differences across 
populations need to be further addressed in the future. Furthermore, 
different matching approaches could be considered [such as pro-
pensity score matching (41) and coarsened exact matching (42)], 
and their effects on the downstream prediction differences should 
also be investigated in the future.

Similarly, in our main analyses, several variables were selected as 
possible “confounders” and were regressed out from both brain and 
behavioral data. Note that we use the more liberal definition of con-
founders taken from statistics, which here refers to the variables that 
are generally correlated with both brain and behavioral data. In oth-
er words, we do not assume specific causal direction from a concep-
tual standpoint when referring to them as confounders. We would 
argue that the causal relationships among these variables, brain and 
behavioral measures, are still under active investigation. Neverthe-
less, to ensure that our findings were not affected in an unexpected 
way by a relatively blind confounds removal, we repeated our main 
analyses without regressing such variables. We could hence show 
that our results could be replicated when refraining from confounds 
removal.

Beyond AA, the generalizability of predictive models in other 
minority populations should also be investigated. In particular, the 
Hispanic population also represents a minority with long-term un-
privileged socioeconomic status in U.S. datasets (43, 44). The rela-
tively large number of Hispanic participants in U.S. datasets, such 
as the ABCD dataset, may, however, allow a rigorous investigation 
of this question in future studies. Other minority groups should also 
benefit from generalizability investigations, such as native Americans. 
However, the currently low number of participants in open datasets 

may complicate the implementation of a proper cross-validation 
scheme in these populations.

Although two independent datasets were used in this study, pre-
dictive models were trained and tested within each dataset separately. 
Cross-ethnicity/race biases were not investigated for cross-dataset 
prediction considering the length of this article. However, it should 
be acknowledged that the generalizability of behavioral prediction 
models across datasets is a crucial research topic and is still under 
intensive investigation (20, 45). How predictive models trained in 
one dataset could generalize to multiple ethnic/racial groups in an-
other dataset should be examined in the future.

Acknowledging these potential limitations and the need for 
further investigations in the future, in the following paragraphs, we 
discuss the implications of our current findings for data collection 
and data analysis strategies. We also briefly warn against neurosci-
entific misinterpretation and address the possible downstream con-
sequences of our findings.

Calling for data collection from non–European-descended 
populations
The two datasets used in this study are among the largest datasets of 
neuroimaging and extensive behavioral phenotyping in the field 
and hence are among the most valuable resources for brain-behavior 
predictive model. However, both datasets are predominately formed 
by white/European individuals: 76% in the HCP dataset and 56% in 
the ABCD dataset (Fig. 1). As an additional promising resource for 
neuroimaging-based predictive models, the currently largest dataset 
with neuroimaging measurements is the UK Biobank dataset (24). 
However, this sample is also mainly formed by European descen-
dants (97.3%). While the second-largest ethnic/racial group is Asian 
British, it represents only 1% of the cohort, resulting in around 
300 participants for which both fMRI and behavioral data are avail-
able. These datasets were thoughtfully collected to represent the 
ethnic distribution in the local population. Yet, the current sample 
sizes of minorities are not sufficient to achieve adequate levels of 
performance for training predictive models from minority groups. 
In the current study, the sample-size limitation of AA also prevents 
us from matching them with WA more accurately so that the differ-
ence in prediction accuracies could be more comprehensively 
evaluated. From this perspective, our findings urge for more neuro-
imaging and behavioral data collected from non-European/white 
ethnic/racial groups.

Moreover, we need to be aware that the U.S. perspective is dom-
inating our recognition and categorization of ethnicities and races, 
at least in the field of neuroscience. For instance, although Chinese 
and Indian populations are largely different regarding cultures, 
diets, etc., they were often treated together as “Asian.” Similarly, 
people from the Middle East cannot be easily classified as either white/
European or Asian. In addition, although current datasets such as 
the HCP dataset were dominated by white/European participants, 
they cannot be assimilated to the population in the European conti-
nent, not to mention the diversity within the European population. 
It is important to design studies that include a complete global spec-
trum of ethnicities, beyond the U.S. ethnic categorization, to fully 
understand human brain and behavior. Looking into each specific 
non-U.S. population, care should also be taken to avoid sampling 
problems as in the current U.S. datasets. Taking one of the rising 
scientific communities, the Chinese population, as an example, 
minority ethnicities within China except the Han Chinese are often 
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neglected or underrepresented in data collection, leading to a lack 
of investigation in non-Han Chinese ethnicities. Thus, the issue of 
underrepresentation of minorities in neuroscience studies and ap-
plications goes importantly beyond the specific population investi-
gated in this study.

A fairness perspective with limited neuroscientific insight
The present study has been designed from the perspective of assess-
ing and promoting fairness of future artificial intelligence applica-
tions across different subgroups of a population. This question was 
addressed from a societal standpoint targeting specific social groups, 
hence based on self-reported information rather than evolutionally 
defined ancestral information. Moreover, as explained above, valid 
assessment required the two groups to be matched regarding be-
havioral performance. Consequently, the results reported in this 
study do not allow any insight into possible neurobiological or neu-
rocognitive differences between the investigated groups. In particu-
lar, nature and nurture can hardly be disentangled with the present 
data, and the interpretation of our results from a basic neuroscien-
tific standpoint is clearly limited. For instance, disparities in public 
sector investments in education (46, 47), family structure and socio-
economic status, and peer influence could mediate the educational 
resources of different ethnic/racial groups (48). Complex models of 
ethnic/racial differences in educational achievement considering both 
structural and cultural inequality have hence been proposed (49). 
Furthermore, from a neuroscience perspective, socioeconomic sta-
tus was also shown to be related to brain morphometry in adoles-
cents and to moderate brain activity during cognitive and emotion 
processing (27, 50). Last, from a medical perspective, ethnic/racial 
minorities tended to have less access to health care and receive lower 
quality of health care, which, in turn, lead to poorer health outcomes, 
i.e., health disparities. Thus, many aspects of structural disparities 
should be considered for phenotype prediction with the goal of 
potentially influencing related policy making. We thus believe that 
neuroscientific studies should focus efforts on identifying efficient 
strategies for reducing biases in future technologies rather than de-
veloping neurobiological theories about group differences that 
potentially contribute to neuroracism (51). New study designs, 
equipment, and preprocessing strategies should be proposed to high-
light methodological bias in past literature of group differences, adapt 
to the diversity of the population, and build fairer artificial intelli-
gence for the future.

Downstream consequences of prediction disparity across 
ethnicities/races
In addition to our examination of overall prediction accuracies be-
tween AA and WA, we also looked into the direction of prediction 
error in AA and WA for each behavioral measure. In the HCP data-
set, we observed more positively predicted social support measures 
(emotional support and instrumental support) and more negatively 
predicted social distress measures (perceived hostility and per-
ceived rejection) in AA than WA (fig. S5A). Therefore, one could be 
concerned that by uncritically relying on the model prediction, the 
pressure that AA feel may be underestimated while the support 
they receive during social interactions may be overestimated. Some 
patterns found in the ABCD dataset further raised potential so-
cietal and ethical consequences if the predicted target variables 
were used without further inspection. For example, for most mea-
sures in the Achenbach Child Behavior Checklist (social problems, 

rule-breaking behavior, etc.), higher predicted scores compared to 
observed scores were found, to a larger extent, in AA than WA. This 
means that more social problems and rule-breaking behavior were 
predicted in AA than WA, compared to the actual behavior (fig. S5B). 
However, behavioral aspects such as aggressive and rule-breaking 
behaviors can contribute to a mental disorder diagnosis. An over-
estimation of behavioral troubles based on the pattern of brain 
connectivity could hence yield to more false positives if the diagno-
sis of disorders was merely made by machine learning algorithms. 
Thus, our finding points to the need of refinement and resolution 
of specific, potentially detrimental, predictive biases before similar 
model frameworks are deployed in artificial intelligence–based 
diagnosis systems.

Limitation of studying ethnicity/race inequality 
in a counterfactual framework
In the context of counterfactual causal inference, the findings of the 
current study should be interpreted as a behavioral prediction dis-
parity between AA and WA that would remain when the distributions 
of basic demographic, anthropometric, and scan-related measures 
were equalized between the two groups (52), given that these mea-
sures were matched between test AA and WA. As we mentioned above, 
matching was performed to avoid effects that would be attributable 
to differences in these confounding variables (e.g., prediction accu-
racy might be different between males and females even within the 
same ethnicity/race). Although we matched the test samples for 
comparison in our work, matching on a few available potentially 
confounding variables does not appear to be an optimal strategy in 
this applied research setting.

In the context of ethnical/racial inequality, limitations of the 
counterfactual framework have been raised recently (53). The major 
criticism was that ethnicity/race could not be manipulated. Since 
ethnicity/race is a complex concept that integrates a myriad of as-
pects such as physical appearance, culture, and socioeconomic status, 
it is not possible to manipulate the race status of otherwise identical 
units (e.g., gestational environment, neighborhood, self-perception, 
and the effects of other perception in social interactions). In other 
words, it is not reasonable to imagine an experimental setting in 
which an AA and a WA are made similar in all aspects except for 
race at the testing time t. Because appropriate solutions at the 
algorithmic/technical level are still under investigation, here, we fol-
lowed a traditional statistical approach but acknowledge this as an 
important limitation of our study.

Multiple model performance metrics are necessary
When the predictive models were trained on the sample with all 
ethnicities/races, the WA exhibited a significantly higher out-of-
sample predictive COD than the matched AA for most behavioral 
phenotypes, suggesting lower prediction error in WA than AA (Fig. 3 
and fig. S4). The accuracy measured by Pearson’s correlation also 
showed significant differences between the two subpopulations, al-
though for some behavioral measures, the correlation of AA was greater 
than that of WA (fig. S10). We therefore looked into the possible 
factors contributing to such discrepancies across accuracy metrics. 
For the behavioral measures showing discrepancies between the 
two metrics, we observed a larger prediction shift and/or a higher 
variance of the original behavioral score in AA as compared to WA 
participants. A larger prediction shift refers here to a systematic 
prediction bias, which means that the model predicted the scores of 
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AA with a systematically larger error (either positive or negative) 
from the original scores. It is possible that the models learned be-
havioral scores that were more similar to WA on average, since the 
training sets were dominated by WA. The model-learned average 
behavioral scores might be different from the average true behavioral 
scores of AA. However, as a model performance metric, Pearson’s 
correlation ignores that shift or systematic bias. Thus, on the one 
hand, Pearson’s correlation has some limitations as an indicator of 
model performance. However, on the other hand, accuracy metric 
based on individual differences between the predicted and true scores 
may also show limitations in a specific situation. In this study, al-
though we matched AA and WA as much as possible, the behavioral 
variances of AA were still generally larger than that of WA, especially 
for the HCP dataset due to the relatively limited AA sample size. 
Probably due to fewer data points at distribution tails compared to 
the center, predictive models tend to overestimate the lower values 
and underestimate the higher values. Therefore, larger variance in 
the original behavioral scores (i.e., more data points on the tails) 
was related to larger prediction error and lower predictive COD. Overall, 
these results indicate that the two common metrics capture different 
aspects of the model performance, are sensitive to different struc-
tural aspects of the original data, and, hence, should be used in com-
bination for a greater insight into the model evaluation as recently 
suggested in the field (33).

Other possible factors contributing to the differences 
in prediction performance
To investigate the impact of training population, we examined the 
performance of predictive models trained specifically on either only 
AA or only WA. By doing so, we found that, although prediction in 
AA benefited, to some extent, from specific AA training compared 
to specific training on only WA, some significant AA-WA differences 
in the test accuracies were still observed (Fig. 5A and fig. S11A). 
Beyond the composition of training samples, potential factors per-
taining to data acquisition and preprocessing might contribute to 
cross-population generalization failures.

Considering brain data, an important preprocessing step is to 
align individual scan to a common space/template so that different 
participants can be compared or averaged. However, the commonly 
used volumetric and surface templates such as MNI152 (a standard 
template generated by Montreal Neurological Institute), fsaverage, 
and fs_LR (also known as Conte69) were mostly built on white/
European-descendant participants. This raises the question of the 
validity of the preprocessing of the data of non-European popula-
tions based on these templates. Recent studies have emphasized the 
need for a population-specific template in neuroimaging studies, 
such as Chinese-specific templates. Several morphological differences 
between Caucasian templates and the templates built on large-scale 
Chinese populations have hence been suggested, given that the use 
of Chinese-specific templates has led to higher segmentation accu-
racy and smaller shape deformations in the Chinese sample than 
Caucasian templates (54, 55). Nevertheless, to the best of our 
knowledge, specific African templates have not been built and eval-
uated for the preprocessing of African population brain data. Thus, 
future work could focus on creating appropriate African templates 
and investigate the effect of template selection on behavioral pre-
diction. Another possible source of bias could be functional atlas, as 
the cortical parcellation we used here was derived from a dataset 
that was also predominately composed of WA (56). In that regard, 

it has been shown that functional parcel boundaries could vary 
across individuals and even across brain states (57, 58). Therefore, a 
relevant question for future research is whether adopting individual-
ized functional brain parcellations, or, at least, a parcellation that is 
representative of an African population atlas, would reduce perform-
ance inequality in subsequent predictive modeling. In this study, we 
focused on RSFC as the predicting neural phenotypes. However, 
generalization failure of predictive models across ethnicities/races 
could also be further investigated using other types of brain features 
(in particular multimodal feature sets).

In the same vein, on the behavioral measures side, biases against 
specific populations in psychometric tools have been a long-standing 
issue (59–62). Despite the fact that the behavioral tests used in the 
HCP and ABCD cohorts are relatively standard tools whose psy-
chometric properties have been previously evaluated, the construct 
validity (whether the test accurately captures the psychological con-
cept it is intended to measure) of some measures in ethnic minori-
ties cannot be fully guaranteed. In that view, discrepancies in the 
psychometric data across ethnicities cannot be straightforwardly 
considered as reflecting biologically difference but should rather be 
seen as a complicated, entangled result of societal, cultural, and 
educational factors. Taking an example of a standardized academic 
achievement test such as SAT (a standardized test for college admis-
sions in the United States), biases against unprivileged ethnic/racial 
groups have been reported decades ago. First, socioeconomic status 
and family background including parental education were consid-
ered to substantially affect child development and academic test 
score via factors such as nutrition and out-of-schooling test prepa-
ration (63, 64). Inequalities in socioeconomic status and family 
background across ethnic/racial groups could hence act as a proxy 
for disparities in academic achievement test. Second, historical seg-
regation of neighborhoods and schools among ethnicities/races has 
also been discussed as contributing to the academic testing dispari-
ties (65). In turn, reliance on these standardized testing scores during 
school admission as gatekeepers might perpetuate inequalities in 
future life quality and career success across ethnicities/races. Greater 
care should hence be taken when collecting psychometric data in 
future initiatives to evaluate their validity in specific ethnicities. 
Awareness should also be raised to avoid machine learning models 
acting as new “gatekeepers” from further contributing to structural 
inequality.

In this study, we have considered and adjusted for multiple variables 
often reported to be correlated with ethnicity/race. Beyond these 
variables, further information on family background, neighborhood 
environment, and accessible resources might be able to help in re-
ducing biases in prediction outcomes. As we have mentioned, family 
background and neighborhood environment could influence cog-
nitive and academic development and ultimately achievements but 
may be disparate across ethnic/racial groups. We considered in-
cluding parental employment in the analyses on the ABCD dataset. 
However, the related questionnaire only probes for coarse categories 
by asking whether the parents were working, looking for work, retired, 
a stay-at-home parent, a student, or others. Nevertheless, it bears 
mentioning that the ABCD dataset also includes both parent- 
reported and child-reported ratings on neighborhood safety and 
crime. These variables are generally not considered in neuroimaging 
studies but might deserve some attention in future work. Resources 
that are crucial for the development of children (e.g., youth develop-
ment units, libraries, and adequate and healthy nutrition) in different 
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communities could also play an important role in both brain struc-
tural and functional development and behavioral measures including 
cognitive performance and mental health. When predicting psy-
chometric measures that are correlated with certain mental disor-
ders, the health resources that can be accessed by different ethnic/
racial groups, especially psychological-medical care services, might 
be helpful to explain the inequality in prediction results.

Last, our study could also be discussed in the context of the de-
bate around the principle of “fairness through unawareness” in the 
context of algorithmic fairness. Fairness through unawareness re-
fers to the approach where algorithms do not explicitly interrogate 
protected variables (ethnicity/race here) in the prediction process. 
As, in this study, we trained ethnicity/race-specific models to explore 
the effects of the relative representation in our participant sample 
on prediction generalizability across subpopulations, it may be seen 
as a violation of that principle. In the same vein, caution should also 
be taken in interpreting the patterns learned by ethnicity/race- 
specific models. In addition to the limited interpretability of machine 
learning models from a technical standpoint, causal reasoning is 
precluded by the limitations of studying the treatment effect of eth-
nicity/race in a counterfactual framework as discussed above. We 
would here reiterate again that speculating about the causes of ob-
served differences in brain-behavior patterns between two popula-
tion groups requires taking into account the myriad of factors 
influencing brain functioning from the gestational period to the 
time of evaluation, as well as the broad range of sociopsychological 
factors influencing performance during psychometric testing (such 
as stereotype threat). We would thus argue against naïve and sim-
plified theorization based on ancestral/genetic differences.

To conclude, we have observed unfair behavioral prediction re-
sults when comparing predictive models for WA and AA using a 
widely adopted training approach in the field. The difference in pre-
diction performance between the two groups was partly related to 
the dominance of WA in the datasets. More neuroimaging and 
psychometric data need to be collected from minority ethnic/
racial groups, not only within the U.S. population but also from a 
global perspective. Although the ethnic/racial data composition 
was important for the fairness of prediction results, it was not 
able to fully explain the difference in prediction performance. 
Therefore, future studies are needed to investigate the cross-ethnic 
validity of possible factors such as data preprocessing and psycho-
metric tools.

MATERIALS AND METHODS
Overview of datasets
Two publicly available datasets were used: the HCP S1200 release 
(66) and the ABCD 2.0.1 release (67, 68). Both datasets contain neuro-
imaging scans and behavioral measures for individual participants.

HCP participants (N = 1094; age, 22 to 37 years) were healthy 
and young, including twins and siblings. Family structures were 
carefully taken care of during latter data splitting and matching (see 
below). All imaging data were acquired on a customized Siemens 
3-T Skyra at Washington University (St. Louis) using a multiband 
sequence. The structural images were 0.7 mm isotropic. The rs-fMRI 
data were 2 mm isotropic with Repetition time (TR) = 0.72 s. Two 
sessions of rs-fMRI data were collected in consecutive days for 
each participant, and each session consisted of one or two runs. The 
length of each rs-fMRI scan was 14.4 min (1200 frames). Details of 

the data collection can be found elsewhere (23, 69). Details about 
behavioral measures can be found in HCP S1200 Data Dictionary 
and in (70).

ABCD participants (N = 11,875; age, 9 to 11 years) were recruited 
from 21 sites across the United States (71). The imaging data were 
acquired from multiple 3-T scanner platforms, GE, Philips, and 
Siemens, with harmonized protocols. The structural images were 1 mm 
isotropic. Each rs-fMRI run was collected in 2.4-mm isotropic reso-
lution with TR = 0.8 s using a multiband sequence. For each participant, 
20 min of rs-fMRI data was acquired in four 5-min runs. Further 
information about sample selection and recruitment and imaging 
acquisition can be found elsewhere (68, 71). Details about behavior-
al measures can be found in (72, 73).

HCP preprocessing and behavioral data
The preprocessing of the HCP neuroimaging data followed previous 
works (74). The MSM-All (75)–registered rs-fMRI data were denoised 
with ICA-FIX (FMRIB’s ICA-based X-noiseifier) (76) and saved in 
the CIFTI grayordiante format (77). To further reduce the global 
motion and respirational artifacts (78, 79) and to improve behavioral 
prediction performance (20, 74), we performed additional regression 
of global signal (the signal averaged across cortical vertices) and its 
first temporal derivative. Censoring was performed during global signal 
regression based on the framewise displacement (FD) (80) and the 
root mean square of voxel-wise differentiated signal (DVARS) (81). 
Mathematically,   DVARS  i   =  √ 

_
 〈  I  i    (x)   2  〉   =  √ 

_______________
  〈  [ I  i  (x ) −  I  i−1  (x ) ]   2  〉   , 

where Ii(x) is the image intensity at location x of frame i, and the 
average is taken over all possible x. Specifically, volumes with 
FD > 0.2 mm or DVARS > 75 were marked as censored frames. One 
frame before and two frames after these volumes along with the 
uncensored segments of data lasting fewer than five contiguous 
volumes were also flagged as censored frames. Regression coefficients 
were only estimated from the uncensored frames. Rs-fMRI runs 
with more than half of the frames flagged as censored frames were 
discarded.

Fifty-eight behavioral variables (table S1) across cognition, per-
sonality, and emotion domains were selected (19, 74). Age, gender, 
FD, DVARS, intracranial volume, years of education, and house-
hold income were selected as confounding variables in the behavioral 
prediction models. These confounding variables were regressed out 
from both behavioral scores and RSFC during prediction. Of the 
1029 participants who passed the motion censoring, 81 participants 
were excluded because of missing data for behavioral measures or 
confounding variables, resulting in 948 participants.

ABCD preprocessing and behavioral data
The preprocessing of ABCD neuroimaging data followed (82). The 
structural T1 imaging data were submitted to the ABCD minimal 
preprocessing pipeline (83) and further processed using FreeSurfer 
5.3.0 (84). The FreeSurfer processing steps generated accurate cor-
tical surface meshes for each individual and registered the individu-
al cortical surface meshes to a common spherical coordinate system 
(85, 86). A total of 404 participants were removed because they did 
not pass FreeSurfer recon-all quality control (QC).

The rs-fMRI data were processed by the minimal preprocessing 
pipeline (83) and the following steps: (i) removal of the first X 
volumes (Siemens and Philips: X = 8; GE DV25: X = 5; GE DV26: 
X = 16; following the ABCD release notes); (ii) alignment with the 
T1 images using boundary-based registration (87) with FsFast 
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(http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast); (iii) outlier frame 
detection (i.e., censoring; see below); (iv) nuisance regression of six 
motion parameters, global signal, mean white matter signal, mean 
ventricular signal, and their temporal derivatives (18 regressors in 
total); (v) interpolation of censored frames using Lomb-Scargle 
periodogram (88); (vi) bandpass filtering (0.009 Hz ≤ f ≤ 0.08 
Hz); and (vii) projection to FreeSurfer fsaverage6 surface space and 
smoothing using a 6-mm full width at half maximum kernel.

We removed the functional runs with a boundary-based regis-
tration cost greater than 0.6. During nuisance regression, the regression 
coefficients were only estimated from the uncensored frames. Spe-
cifically, volumes with FD > 0.3 mm or DVARS > 50, along with one 
volume before and two volumes after, were marked as censored frames. 
The FD threshold used for ABCD was chosen following (82) to 
achieve the balance between adequate motion censoring and a large 
sample size. The DVARS thresholds were selected so that the num-
ber of censored frames due to DVARS was roughly the same as the 
number of frames due to FD. Uncensored segments of data containing 
fewer than five contiguous volumes were also censored. Rs-fMRI 
runs with more than half of the frames flagged as censored frames 
were discarded. After censoring, the participants with less than 4-min 
rs-fMRI data were excluded. In total, 4457 participants were dis-
carded following rs-fMRI QC. Furthermore, 11 participants were 
excluded because the data were collected on the problematic Philips 
scanners (https://github.com/ABCD-STUDY/fMRI-cleanup).

Different from the preprocessing approach used in the HCP 
dataset, ICA-FIX was not adopted in the ABCD dataset. A potential 
limitation of ICA-FIX for the current study could be that the signal- 
versus-noise classifier was also trained in the HCP dataset (76), 
which was again dominated by WA. However, we acknowledge that 
the current preprocessing strategies for the ABCD dataset were fol-
lowing our previous studies (19, 74, 82) and might not be optimal.

We examined 36 behavioral measures (82) from all available 
neurocognitive (72) and mental health (73) assessments, except the 
Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS-5) 
and Cash Choice Task because these two measures contained binary 
or ternary values that were not suitable for regression model. These 
36 behavioral measures are summarized in table S2. Age, gender, 
FD, DVARS, intracranial volume, and parental education were con-
sidered as confounding variables in the behavioral prediction models. 
Among the 5809 participants who passed both recon-all and rs-fMRI 
QC, 458 participants were excluded because of missing data for 
behavioral or confounding variables, yielding 5351 participants 
across 19 sites for further analyses.

Functional connectivity computation
RSFC was computed across 419 regions of interest (ROIs) (Fig. 1, C and D) 
using Pearson’s correlation. The 419 ROIs consisted of 400 cortical 
parcels (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_
projects/brain_parcellation/Schaefer2018_LocalGlobal) (56) and 
19 subcortical regions. For the HCP dataset, to be consistent with 
the space of fMRI time series, these 19 subcortical regions were de-
fined on the basis of grayordinate data structure. For the ABCD 
dataset, the 19 subcortical ROIs were obtained in participant-specific 
volumetric space defined by FreeSurfer (89). Censored frames were 
ignored in the RSFC calculation. For each participant, the correla-
tion matrix was computed for each run, Fisher z-transformed, and 
then averaged across runs and sessions, yielding one final 419 × 
419 RSFC matrix for each participant.

Subpopulation matching and data split
Differences in prediction accuracy between WA and AA, if any, 
could be related to confounding effects of variables such as head size 
(and thus brain size). To limit the influence of confounding factors 
as much as possible, Hungarian matching was performed to select 
demographically and behaviorally matched AA-WA pairs, which were 
used for the test phase of cross-validation in behavioral prediction. 
Hungarian matching was initially proposed to solve the assignment 
problem (90, 91). A simple example of assignment problem can be 
considered: Three workers are supposed to be assigned to three jobs 
separately. Each worker asks for different payments for completing 
different jobs, which generates a 3 × 3 matrix where element (i, j) of 
this matrix represents the cost of assigning worker i to job j. The 
goal is to assign each worker to a job with the lowest total cost. In 
this study, we treated WA and AA as the workers and jobs in the 
previous example and considered the differences in behavioral scores 
and confounding factors as the cost.

Because of the single- versus multisite difference between the 
two datasets, procedures for matching and data split were different. 
For the HCP dataset, the participants can be randomly split into 
folds, and the matching can be achieved within each fold, as long as 
the family structure was taken care of. To obtain generalizable re-
sults, the random split can be performed multiple times with differ-
ent random seeds. However, for the ABCD dataset, the matching 
was performed within each site. Given the various site sizes, the 19 
sites cannot be combined into training and test folds with random 
repetitions. Hence, we first combined the 19 sites into 10 folds that 
had a similar number of matched pairs of AA and WA. Then, each 
time, the prediction model was trained on 7 of the 10 folds and test-
ed on the other 3 folds, yielding 120 variations of training-test split 
for generalizability purposes.

The 948 HCP participants included 721 WA (62 Hispanic + 659 
non-Hispanic), 129 AA, 59 Asian/native Hawaiian/other Pacific 
Islander participants, 2 American Indians/Alaskan natives, 22 par-
ticipants with mixed ethnicities/races, and 15 participants with 
unknown or nonreported ethnic/racial information (Fig. 1A). For 
each behavior, Hungarian matching was used to select the matched 
AA-WA pairs for the comparison of prediction accuracies. According 
to an initial matching step, 28 AA participants exhibited consistently 
high matching cost across behaviors, where the matching cost was 
calculated as the summed differences in age, gender, FD, DVARS, 
and behavioral scores. Hence, they were excluded from the match-
ing procedure and grouped together with other ethnic/racial sub-
populations (Fig. 2A, yellow color). Post hoc inspection observed 
higher proportion of females, more poorly educated, and low- 
income participants within these 28 participants, compared to the 
entire AA sample involved in this study. The remaining 101 AA 
(blue color) were randomly split into 10 folds for cross-validation in 
behavioral prediction. The same number of WA (green color) was 
randomly selected from the total 721 WA, repeated by 10,000 itera-
tions. Within each iteration, we calculated the AA-WA matching 
cost as mentioned above for each fold. The final matched WA were 
from the iteration with the lowest maximal cost across folds. Addi-
tional matching for intracranial volume, education, and income was 
not possible because it would have greatly decreased the selected AA 
sample size. For each behavior, the whole procedure was randomly 
repeated multiple times until at least 40 different AA splits 
can be obtained with matched WA, because a single 10-fold 
cross-validation might be sensitive to the particular split of the data 
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into folds (92). For each random split of AA, the 620 unmatched 
WA, along with the 28 hard-to-match AA and participants from 
other ethnic/racial groups, were further randomly split into 10 folds 
and then were combined with the 10 folds of matched AA-WA 
pairs. We ensured that participants from the same family were not 
split across folds among all steps. Differences in the matching con-
founds and behavioral distributions between the selected AA-WA 
pairs were evaluated using paired sample t test. Multiple compari-
sons were corrected on the basis of FDR < 0.05 across all behaviors, 
confounds, and data splits. For the following seven behaviors, matched 
WA could not be found for enough (i.e., 40) AA splits: fluid intelli-
gence (Penn Matrix Test), vocabulary (picture matching), delay dis-
counting, story comprehension, relational processing, working memory 
(N-back), and life satisfaction. These behavioral measures were excluded 
from further analyses. No significant difference was found for the 
remaining behavioral measures after correction (fig. S1).

The 5351 ABCD participants included 2999 WA (non-Hispanic), 
635 AA, 1053 Hispanic participants, 110 Asian participants, and 
554 participants in other ethnic/racial groups, spread across 19 sites 
(Fig. 1B; purple color in Fig. 2B). For each behavior, iterative Hungarian 
matching was performed within each site to obtain matched 
AA-WA pairs based on the summed differences in age, gender, FD, 
DVARS, intracranial volume, parental education, and the behavioral 
scores. Starting from all AA of a specific site, each iteration excluded 
the AA that could not be matched with any WA and the AA with 
the highest matching cost. The iteration stopped when it reached 
100 rounds or the decrease of matching cost was less than 5% of the 
cost in the previous iteration, yielding the matched AA and WA for 
each site. The thresholds for stopping the iterations were chosen not 
only to obtain matched AA-WA pairs with no significant difference 
in demographical and behavioral distributions but also to keep as 
many participants as possible. The matched AA and WA were rep-
resented by blue and green colors in Fig. 2B, respectively, while the 
unmatched AA, WA, and participants in other race groups were 
indicated by yellow color. In summary, the number of matched 
pairs of AA and WA ranged from 192 to 301 across behaviors. The 
19 sites, including all ethnic/racial groups, were further merged into 
10 folds to achieve more similar number of matched AA-WA pairs 
across the 10 folds. Because of the site constraints, data splitting 
could not be randomly repeated as for the HCP dataset. Instead, we 
selected any 7 of the 10 folds to train the behavioral model, and the 
remaining 3 folds were used to test the model. Differences in con-
founds and behavioral distributions between the matched AA and 
WA were evaluated using paired sample t test (FDR-corrected 
across all behaviors, confounds, and data splits). No significant dif-
ference was found for all 36 behaviors after correction (fig. S2).

Kernel ridge regression
Each behavioral measure from both datasets was predicted using 
kernel ridge regression (93) separately. We used this approach be-
cause it can effectively predict behavioral measures while enjoying 
low computational cost. Suppose ys and yi denote the behavioral 
measure (e.g., episodic memory) of test participant s and training 
participant i, respectively. Let cs and ci denote the vectorized RSFC 
(lower triangular entries of the RSFC matrices) of test participant s 
and training participant i, respectively. Then, roughly speaking, 
kernel regression would predict ys as the weighted average of the be-
havioral measures of all training participants, i.e.,     ̂  y    s   ≈  ∑ i∈training set      
Similarity( c  s  ,  c  i   )  y  i   . Here, Similarity(cs, ci) was defined by Pearson’s 

correlation between the vectorized RSFC of the test participant and 
the ith training participant. Therefore, successful prediction would 
indicate that participants with more similar RSFC have similar be-
havioral scores. To reduce overfitting, an l2 regularization term was 
included. More details can be found in Supplementary Methods.

For the HCP dataset, we performed 10-fold nested cross-validation 
preserving family structure. For each test fold, the kernel regression 
parameters were estimated from all ethnic/racial groups in the nine 
training folds. Tenfold cross-validation was, in turn, performed on 
the nine training folds with different l2 regularization parameter 
 to optimally select the value of . The estimated parameters from 
the training folds were then used to predict the behavior of the par-
ticipants in the test fold. Because a single 10-fold cross- validation 
might be sensitive to the particular split of the data into folds (33), 
the above 10-fold cross-validation was repeated 40 times (see the 
“Subpopulation matching and data split” section). Confounding vari-
ables of age, gender, FD, DVARS, intracranial volume, education, 
and household income were regressed out from both behavioral and 
RSFC data. To investigate the effects of confound regression on the 
model biases, we also repeated the main analysis without regressing 
any confounding variables.

For the ABCD dataset, all participants were split into 10 folds 
(see the “Subpopulation matching and data split” section). The kernel 
regression parameters were estimated from any seven folds and 
applied on the remaining three folds for testing, yielding 120 training- 
test combinations (82). The 10-fold cross-validation was performed 
on the 7 training folds to select the optimal regulation parameter . 
Confounding variables of age, gender, FD, DVARS, intracranial 
volume, and parental education were regressed from both behav-
ioral and RSFC data. Same as for the HCP dataset, we also repeated 
the main analysis without confound regression. Household income 
was not included because of the large number of missing values (93 
of the total 635 AA participants refused to answer or with unknown 
income). To ensure that the results were not specific to kernel ridge 
regression models, we also used linear ridge regression as an auxil-
iary method for both datasets. The training and test procedures 
were the same as those used for kernel ridge regression. The selected 
optimal hyperparameters of these two methods are listed in table S3 
for each behavioral measure.

Two accuracy metrics were considered: predictive COD and 
Pearson’s correlation. For each test fold, the predictive COD of AA 
was defined as 1 − SSEAA/SST, where   SSE  AA   =  ∑ i∈test AA      ( y  i   −    ̂  y    i  )   2  /  
N  test AA    (yi and     ̂  y    i    are the original behavioral score and predicted score 
of ith test AA participant, respectively; Ntest AA is the number of AA 
in test set), i.e., the MSE. The denominator SST = ∑j ∈ train AA&WA(yj − 
mean(ytrain AA&WA))2/Ntrain AA&WA represented the total behav-
ioral variance learned from the training set. The predictive COD of 
WA was defined as 1 − SSEWA/SST, where   SSE  WA   =  ∑ i∈test  WA      
( y  i   −    ̂  y    i  )   2  /  N  test  WA    and SST was the same as AA because the total 
variance was not assumed here to be group specific. Pearson’s cor-
relation was also calculated separately for each test fold. For the HCP 
dataset, the predictive COD or Pearson’s correlation was averaged 
across 10 folds for each data split, yielding 40 accuracy values. For 
the ABCD dataset, the 120 accuracy values corresponding to 120 data 
splits were not averaged but directly shown in the boxplots in Results.

AA versus WA accuracy difference
For each dataset and each accuracy metric, we determined behaviors 
as predictable or not based on two criteria: (i) the accuracy across all 
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test participants including AA, WA, and other ethnicity/race that 
survived the multilevel block permutation test (94) by shuffling the 
predicted behavioral scores 1000 times (FDR-corrected across be-
haviors); (ii) the average accuracies across data splits were positive 
in either AA or WA. For each predictable behavior, the accuracy 
difference between matched AA and WA was evaluated by a per-
mutation test, where the null distribution was built by recalculating 
accuracies with shuffling the group labels 1000 times. Multiple 
comparisons were controlled with FDR < 0.05.

Influence of training population
To explore the effects of training population, we trained the kernel 
ridge regression model specifically on only-AA or only-WA sub-
samples separately. Concretely, we selected all AA in the training 
folds. Within each site of selected training AA, we randomly selected 
the same number of WA. Note that for some sites, the total number 
of WA was fewer than AA; hence, random AA were excluded to 
match the number of WA. The prediction model was then trained 
on the selected AA or the selected WA or both and tested on 
matched AA and WA, in the same way as when the model was 
trained on the full datasets.

Brain-behavior association pattern
As stated in (34), the model parameters learned by kernel ridge re-
gression cannot be interpreted directly as the importance of the cor-
responding pair of ROIs. Using the inversion method provided in 
(34), the importance of each edge, referred to as model-learned 
brain-behavior association, can be calculated as  covariance(RSF  C  train  pq  , 
    ̂  y    train  ) , where  RSF  C train  pq    is the demeaned RSFC between pth and qth 
ROIs of all training participants, and     ̂  y    train    is the predicted behavioral 
scores of training participants. Similarly, the true brain-behavior 
association pattern can be defined separately for AA and WA as  
covariance(RSF  C test AA  pq  ,  y  test AA  )  and  covariance(RSF  C test WA  pq  ,  y  test WA  ) . 
Note that the true brain-behavior association was computed on the 
basis of the original behavioral scores instead of predicted scores. 
Pearson’s correlation between model-learned and true brain-behavior 
association was then calculated as the similarity between the two 
measures for AA and WA separately.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj1812

View/request a protocol for this paper from Bio-protocol.
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