Antiparkinsonian; D(2L); Dopamine; Functional selectivity; G protein; G protein-coupled receptor; Luciferase; Parkinson's disease; Receptor density; Signaling bias; β-arrestin; D2L; Pharmacology; Cellular and Molecular Neuroscience
Abstract :
[en] INTRODUCTION: Brain imaging studies have highlighted that the density of dopamine D2 receptors markedly fluctuates across the stages of Parkinson's disease and in response to pharmacological treatment. Moreover, receptor density constitutes a molecular determinant for the signaling profile of D2 receptor ligands. We therefore hypothesized that variations in receptor expression could influence D2 receptor response to antiparkinsonian drugs, most notably with respect to the recruitment bias between Gi1 and β-arrestin2.
METHODS: The recruitment bias of dopamine, pramipexole, ropinirole, and rotigotine was examined using a nanoluciferase-based biosensor for probing the interactions of the D2L receptor with either Gi1 or β-arrestin2. The characterization of the functional selectivity of these D2 receptor agonists was performed at two distinct D2L receptor densities by taking advantage of a cell model carrying an inducible system that enables the overexpression of the D2L receptor when exposed to doxycycline.
RESULTS: A high receptor density oriented the balanced signaling profile of dopamine towards a preferential recruitment of Gi1. It also moderated the marked Gi1 and β-arrestin2 biases of pramipexole and rotigotine, respectively. At variance, the Gi1 bias of ropinirole appeared as not being influenced by D2L receptor density.
CONCLUSIONS: Taken together, these observations highlight receptor density as a key driver of the signaling transducer recruitment triggered by antiparkinsonian agents. Moreover, given the putative beneficial properties of β-arrestin2 in promoting locomotion, this study provides molecular insights that position the arrestin-biased ligand rotigotine as a putatively more beneficial D2 receptor agonist for the treatment of early and late Parkinson's disease.
This work was supported by the Fonds de la Recherche Scientifique – FNRS . M.F. is a research fellow of the FNRS. J.H. is senior research associate of the FNRS.
Allen, J.A., Yost, J.M., Setola, V., Chen, X., Sassano, M.F., Chen, M., Peterson, S., Yadav, P.N., Huang, X.P., Feng, B., Jensen, N.H., Che, X., Bai, X., Frye, S.V., Wetsel, W.C., Caron, M.G., Javitch, J.A., Roth, B.L., Jin, J., Discovery of β-arrestin-biased dopamine D 2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 18488–18493, 10.1073/pnas.1104807108.
Antonini, A., Schwarz, J., Oertel, W.H., Pogarell, O., Leenders, K.L., Long-term changes of striatal dopamine D2 receptors in patients with Parkinson's disease: a study with positron emission tomography and [11C]raclopride. Mov. Disord. 12 (1997), 33–38, 10.1002/mds.870120107.
Armstrong, M.J., Okun, M.S., Diagnosis and treatment of Parkinson disease: a review. JAMA, J. Am. Med. Assoc. 323 (2020), 548–560, 10.1001/jama.2019.22360.
Baik, J.H., Picetti, R., Saiardi, A., Thiriet, G., Dierich, A., Depaulis, A., Le Meur, M., Borrelli, E., Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:6548 (1995), 424–428, 10.1038/377424a0.
Beaulieu, J.M., Gainetdinov, R.R., The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63 (2011), 182–217, 10.1124/pr.110.002642.
Beaulieu, J.M., Gainetdinov, R.R., Caron, M.G., The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol. Sci. 28 (2007), 166–172, 10.1016/j.tips.2007.02.006.
Brust, T.F., Hayes, M.P., Roman, D.L., Burris, K.D., Watts, V.J., Bias analyses of preclinical and clinical D2 dopamine ligands: studies with immediate and complex signaling pathways. J. Pharmacol. Exp. Therapeut. 352 (2015), 480–493, 10.1124/jpet.114.220293.
Červenka, S., Pålhagen, S.E., Comley, R.A., Panagiotidis, G., Cselényi, Z., Matthews, J.C., Lai, R.Y., Halldin, C., Farde, L., Support for dopaminergic hypoactivity in restless legs syndrome: a PET study on D2-receptor binding. Brain 129 (2006), 2017–2028, 10.1093/brain/awl163.
Chun, L.S., Vekariya, R.H., Free, R.B., Li, Y., Lin, D.T., Su, P., Liu, F., Namkung, Y., Laporte, S.A., Moritz, A.E., Aubé, J., Frankowski, K.J., Sibley, D.R., Structure-activity investigation of a G protein-biased agonist reveals molecular determinants for biased signaling of the D2 dopamine receptor. Front. Synaptic Neurosci., 10, 2018, 2, 10.3389/FNSYN.2018.00002/BIBTEX.
Dixon, A.S., Schwinn, M.K., Hall, M.P., Zimmerman, K., Otto, P., Lubben, T.H., Butler, B.L., Binkowski, B.F., MacHleidt, T., Kirkland, T.A., Wood, M.G., Eggers, C.T., Encell, L.P., Wood, K.V., NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11 (2016), 400–408, 10.1021/acschembio.5b00753.
Donthamsetti, P., Gallo, E.F., Buck, D.C., Stahl, E.L., Zhu, Y., Lane, J.R., Bohn, L.M., Neve, K.A., Kellendonk, C., Javitch, J.A., Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol. Psychiatr. 25 (2020), 2086–2100, 10.1038/s41380-018-0212-4.
Ferraiolo, M., Atik, H., Ponthot, R., Belo do Nascimento, I., Beckers, P., Stove, C., Hermans, E., Receptor density influences ligand-induced dopamine D2L receptor homodimerization. Eur. J. Pharmacol., 911, 2021, 10.1016/j.ejphar.2021.174557.
Frampton, J.E., Rotigotine transdermal patch: a review in Parkinson's disease. CNS Drugs 33 (2019), 707–718, 10.1007/s40263-019-00646-y.
Gay, E.A., Urban, J.D., Nichols, D.E., Oxford, G.S., Mailman, R.B., Functional selectivity of D2 receptor ligands in a Chinese hamster ovary hD2L cell line: evidence for induction of ligand-specific receptor states. Mol. Pharmacol. 66 (2004), 97–105, 10.1124/mol.66.1.97.
Gazi, L., Bobirnac, I., Danzeisen, M., Schüpbach, E., Langenegger, D., Sommer, B., Hoyer, D., Tricklebank, M., Schoeffter, P., Receptor density as a factor governing the efficacy of the dopamine D4 receptor ligands, L-745,870 and U-101958 at human recombinant D4.4 receptors expressed in CHO cells. Br. J. Pharmacol. 128 (1999), 613–620, 10.1038/sj.bjp.0702849.
Giladi, N., Boroojerdi, B., Korczyn, A.D., Burn, D.J., Clarke, C.E., Schapira, A.H.V., Rotigotine transdermal patch in early Parkinson's disease: a randomized, double-blind, controlled study versus placebo and ropinirole. Mov. Disord. 22 (2007), 2398–2404, 10.1002/mds.21741.
Giladi, N., Nicholas, A.P., Asgharnejad, M., Dohin, E., Woltering, F., Bauer, L., Poewe, W., Efficacy of rotigotine at different stages of Parkinson's disease symptom severity and disability: a post hoc analysis according to baseline hoehn and yahr stage. J. Parkinsons Dis. 6 (2016), 741–749, 10.3233/JPD-160847.
Gray, R., Ives, N., Rick, C., Patel, S., Gray, A., Jenkinson, C., McIntosh, E., Wheatley, K., Williams, A., Clarke, C.E., Sandercock, P., Baigent, C., Crome, P., Abbott, R., Baker, M., Castleton, B., Counsell, C., Deb, A.K., Fairweather, S., Fitzpatrick, R., MacPhee, G., Malone, T., Mant, D., Ming, A., Morrish, P., Ohri, P., Pearce, V., Wood, B., Worth, P., Au, P., Boodell, T., Cheed, V., Daniels, J., Dowling, F., Edmondson, A., Hawker, R., Herd, C., Hilken, N., Kaur, S., Ottridge, R., Peto, L., Sidile, C., Tomlinson, C., Tyler, E., Winkles, N., Kent, S., Caie, L., Caslake, R., Coleman, R., Crowley, P., Gerrie, L., Gordon, J., Harris, C., Leslie, V., Macleod, M.A., Taylor, K., Barker, R., Forsyth, D., Halls, M., Lennox, G., Young, J., Azie, E., Barrett, J., Monaghan, A., Turnbull, C., Vanek, H., Blake, D., Manford, M., Thangarajah, N., Johnson, M., Wallis, P., Carr, P., Cochrane, L., Prescott, R., Rose, A., Drover, M., Karunaratne, P., McLaren, A., Jones, E., Nasar, M., Bayliss, M., Jones, A.P., Lewis, B., Dunn, A., Eckley, M., Price, J., Woodman, G., Aldridge, G., Bhuvanendran, N., Lewis, S., Mann, C., Patel, K., Ghaus, N., Grueger, A., Mallinson, B., Wihl, G., Ballantyne, S., Coyle, S., Hornabrook, R., Hutchinson, S., Irfan, H., Lewthwaite, A., Nicholl, D., Poxon, S., Ritch, A., Davison, J., Dodds, S., Gray, C., Nath, U., Robinson, G., Deb, A., Aftab, N., Read, D., Villanueva, L., Alderton, L., Burrows, E., Fletcher, P., Folkes, E., Gilbert, A., Hayes, H., Morrow, P., Silva, M., Baxter, G., Bell, J., Gorman, J., Lawrence, J., Rhind, G., Hindle, J., Jones, J., Parry, M., Roberts, E., Subashchandran, R., Pycock, C., Aspden, L., Partington-Jones, L., Raw, J., Wadhwa, U., Barber, R., Haywood, B., Heywood, P., Lewis, H., O'Sullivan, K., Prout, K., Whelan, L., Whone, A., Fuller, G., Medcalf, P., Aruldoss, P., Farmery, J., Liveley, K., Shelbourn, K., Sood, V., Bouifraden, K., Dalziel, J., Evans, C., Matheson, P., Overstall, P., Wales, E., Ward, G., Ponsford, J., Graham, I.A., Grimmer, S.F.M., Lockington, T.J., Sheehan, L.J., Williams, H., Fuller, J., Harrison, P., Roche, M., Shields, S., Glasspool, R., Hubbard, I., Walters, R., Barraclough, C., McClung, A., Moseley, L., Pathirana, C.K., Critchley, P., Wray, L.G., Kendall, B., Lawden, M., Lo, N., Martey, J., Rajabally, Y., Simpson, B., Gale, A., Phiri, D., Sekaran, L., Sharma, A., Wijayasiri, S., Fleary, H., Silverdale, M., Walker, D., McGee, M., Senthil, V., Reynolds, S., Arnould, D., Chong, S., Diem, D., Kundu, B., Quinn, N., Benamer, H., Billings, J., Corston, R., D'Costa, D., Green, M., Shuri, J., Cassidy, T., Gani, A., Lawson, R., Noble, J., Chan, Y., Clipsham, K., Cochius, J., Dick, D., Hipperson, M., Lee, M., Payne, B., Reading, F., Sabanathan, K., Harper, G., Honan, W., Oxborough, L., Saunders, J., Stanley, J., McCann, P., Edmonds, P., Hand, A., O'Hanlon, S., Robinson, L., Walker, R., Bolam, D., Liddle, B., Ballantyne, S.L., Byravan, R., Jones, P., Guptha, S., Noble, C., Roychowdhury, S., Ellis, C., Harries -Jones, R., Hillier, C., Milligan, N., Potter, J., Ebenezer, L., Raha, S., Thompson, S., Crouch, R., Healy, K., Pall, H., Praamstra, P., Beaumont, D., Ell, S., McGourty, J., Jenkinson, M., McHenry, M., Scoble, N., Vahid, R., Findley, L., Misbahuddin, A., Adcock, J., Chatterjee, A., Collins, H., Flossman, E., Greenhall, R., Hart, H., Shaw, J., Singh, S., Talbot, K., Weir, A., Gray, D., Sutherland, S., Wilson, M., Hughes, T., Jones, A., Morgan, L., Sastry, B., Abdel-Hafiz, A., Al-Modaris, F., Dutta, S., Mallik, T., Mondal, B., Roberts, J., Sinha, S., Amar, K., Atkins, S., Devadason, G., Martin, A., Thompson, C., Fenwick, G., Gormley, K., Gutowski, N., Harris, S., Harrower, T., Hemsley, A., James, M., Jeffreys, O., Sheridan, R., Soper, C., Sword, J., Zeman, A., Gordon, C., McElwaine, T., Pressly, V., Chan, D., Saha, R., Howcroft, D., Mugweni, K., Robertson, D., Stephens, A., Whelan, E., Wright, A., Blane, N., Burns, S., Mutch, W., Roberts, R., Chikna, E., Chamberlain, J., Lee, J., Marigold, J., Adams, J., Dulay, J., Evans, S., Frankel, J., Garrard, P., Gibb, W., Gove, R., Holmes, C., Lawton, N., Malik, N., Morgan, S., Phipps, H., Queen, V., Roberts, H., Tan, R., Turner, G., Weller, R., Zaman, S., O'Brien, A., Grosset, D., McGonigal, A., Vennard, C., Rektorova, I., Carey, G., Dhakam, Z., Kalcantera, E., Long, C., Mandal, B., Martin, V., Nari, R., Nicholas, V., Sunderland, C., Franks, S., Hammans, S., Moffitt, V., Rice-Oxley, M., Elizabeth, J., Logan, A., Summers, B., Cooper, S., Darch, W., Homan, J., Hussain, M., Sharratt, D., Solanki, T., Bennett, J., Vassallo, J., Ford, A., Kendall, G., Stocker, K., Chaudhry, A., Grubneac, A., Kenton, A., Lindahl, A., Lismore, J., McConville, M., Peskett, R., Shehu, A., Strens, L., Moore, A., O'Brien, I., Watling, D., Wyatt, L., Jones, C., Mahan, T., Ullyart, K., Desai, H., Ferry, P., Ray, P., Rose, P., Thanvi, B., Waters, S., Rizvi, S., Sa'Adu, A., Walker, E., Berry, G., Russell, N., Ward, T., Abrams, J., Ashley, S., Steiger, M., Beal, A., Hawkins, J., Heller, A., Samuel, M., Primrose, W., Baker, K., Buckley, C., Bulley, S., Gibbons, D., Goodland, R., Jones, L., Martin, L., Qadiri, M.R., Rashed, K., Rowland -Axe, R., Stone, A., Whittuck, M., Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson's disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 384 (2014), 1196–1205, 10.1016/S0140-6736(14)60683-8.
Gundry, J., Glenn, R., Alagesan, P., Rajagopal, S., A practical guide to approaching biased agonism at G protein coupled receptors. Front. Neurosci., 11, 2017, 17, 10.3389/fnins.2017.00017.
Guo, W., Urizar, E., Kralikova, M., Mobarec, J.C., Shi, L., Filizola, M., Javitch, J.A., Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 27 (2008), 2293–2304, 10.1038/emboj.2008.153.
Han, Y., Moreira, I.S., Urizar, E., Weinstein, H., Javitch, J.A., Allosteric communication between protomers of dopamine class a GPCR dimers modulates activation. Nat. Chem. Biol. 5 (2009), 688–695, 10.1038/nchembio.199.
Hermans, E., Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol. Ther. 99 (2003), 25–44, 10.1016/S0163-7258(03)00051-2.
Hermans, E., Challiss, R.A.J., Nahorski, S.R., Effects of varying the expression level of recombinant human mGlu1α receptors on the pharmacological properties of agonists and antagonists. Br. J. Pharmacol. 126 (1999), 873–882, 10.1038/sj.bjp.0702359.
Ichise, M., Kim, Y.J., Ballinger, J.R., Vines, D., Erami, S.S., Tanaka, F., Lang, A.E., SPECT imaging of pre- and postsynaptic dopaminergic alterations in L- dopa-untreated PD. Neurology 52 (1999), 1206–1214, 10.1212/wnl.52.6.1206.
Jarvis, G.E., Thompson, A.J., Evidence for an effect of receptor density on ligand occupancy and agonist EC 50. Sci. Rep. 9 (2019), 1–12, 10.1038/s41598-019-55361-x.
Kaasinen, V., Ruottinen, H.M., Någren, K., Lehikoinen, P., Oikonen, V., Rinne, J.O., Upregulation of putaminal dopamine D2 receptors in early Parkinson's disease: a comparative PET study with [11C]raclopride and [11C]N- methylspiperone. J. Nucl. Med. 41 (2000), 65–70.
Kenakin, T., New concepts in pharmacological efficacy at 7TM receptors: IUPHAR Review 2. Br. J. Pharmacol. 168 (2013), 554–575, 10.1111/j.1476-5381.2012.02223.x.
Kenakin, T., A pharmacology primer. A Pharmacol. Prim, 2009, 21–44, 10.1016/B978-0-12-374585-9.X0001-1.
Kenakin, T., Differences between natural and recombinant G protein-coupled receptor systems with varying receptor/G protein stoichiometry. Trends Pharmacol. Sci. 18 (1997), 456–464, 10.1016/S0165-6147(97)01136-X.
Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos, A., Novick, S., A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3 (2012), 193–203, 10.1021/cn200111m.
Kilts, J.D., Connery, H.S., Arrington, E.G., Lewis, M.M., Lawler, C.P., Oxford, G.S., O'Malley, K.L., Todd, R.D., Blake, B.L., Nichols, D.E., Mailman, R.B., Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs. J. Pharmacol. Exp. Therapeut. 301 (2002), 1179–1189, 10.1124/jpet.301.3.1179.
Klewe, I.V., Nielsen, S.M., Tarpø, L., Urizar, E., Dipace, C., Javitch, J.A., Gether, U., Egebjerg, J., Christensen, K.V., Recruitment of β-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling. Neuropharmacology 54 (2008), 1215–1222, 10.1016/j.neuropharm.2008.03.015.
Koener, B., Focant, M.C., Bosier, B., Maloteaux, J.M., Hermans, E., Increasing the density of the D 2L receptor and manipulating the receptor environment are required to evidence the partial agonist properties of aripiprazole. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 36 (2012), 60–70, 10.1016/j.pnpbp.2011.08.007.
Laschet, C., Dupuis, N., Hanson, J., A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR–G protein interactions. J. Biol. Chem. 294 (2019), 4079–4090, 10.1074/jbc.RA118.006231.
Laschet, C., Hanson, J., Nanoluciferase-based complementation assay to detect GPCR-G protein interaction. Methods Mol. Biol. 2268 (2021), 149–157, 10.1007/978-1-0716-1221-7_10.
Lefkowitz, R.J., Shenoy, S.K., Transduction of receptor signals by β-arrestins. Science 308 (2005), 512–517, 10.1126/science.1109237.
Mann, A., Keen, A.C., Mark, H., Dasgupta, P., Javitch, J.A., Canals, M., Schulz, S., Robert Lane, J., New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D2 receptor regulation and signaling. Sci. Rep., 11, 2021, 10.1038/S41598-021-87417-2.
Mierau, J., Schneider, F.J., Ensinger, H.A., Chio, C.L., Lajiness, M.E., Huff, R.M., Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. Eur. J. Pharmacol. Mol. Pharmacol. 290 (1995), 29–36, 10.1016/0922-4106(95)90013-6.
Mottola, D.M., Kilts, J.D., Lewis, M.M., Connory, H.S., Walker, Q.D., Jones, S.R., Booth, R.G., Hyslop, D.K., Piercey, M., Wightman, R.M., Lawler, C.P., Nichols, D.E., Mailman, R.B., Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D 2 receptors linked to adenylate cyclase. J. Pharmacol. Exp. Therapeut. 301 (2002), 1166–1178, 10.1124/jpet.301.3.1166.
Nagi, K., Pineyro, G., Practical guide for calculating and representing biased signaling by GPCR ligands: a stepwise approach. Methods 92 (2016), 78–86, 10.1016/j.ymeth.2015.09.010.
Neve, K.A., Seamans, J.K., Trantham-Davidson, H., Dopamine receptor signaling. J. Recept. Signal Transduct. 24 (2004), 165–205, 10.1081/RRS-200029981.
Onaran, H.O., Ambrosio, C., Ugur, Ö., Madaras Koncz, E., Grò, M.C., Vezzi, V., Rajagopal, S., Costa, T., Systematic errors in detecting biased agonism: analysis of current methods and development of a new model-free approach. Sci. Rep., 7, 2017, 10.1038/srep44247.
Onaran, H.O., Costa, T., Conceptual and experimental issues in biased agonism. Cell. Signal., 82, 2021, 109955, 10.1016/j.cellsig.2021.109955.
Papenberg, G., Jonasson, L., Karalija, N., Johansson, J., Köhncke, Y., Salami, A., Andersson, M., Axelsson, J., Wåhlin, A., Riklund, K., Lindenberger, U., Lövdén, M., Nyberg, L., Bäckman, L., Mapping the landscape of human dopamine D2/3 receptors with [11C]raclopride. Brain Struct. Funct. 224 (2019), 2871–2882, 10.1007/s00429-019-01938-1.
Poewe, W.H., Rascol, O., Quinn, N., Tolosa, E., Oertel, W.H., Martignoni, E., Rupp, M., Boroojerdi, B., Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson's disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 6 (2007), 513–520, 10.1016/S1474-4422(07)70108-4.
Politis, M., Wilson, H., Wu, K., Brooks, D.J., Piccini, P., Chronic exposure to dopamine agonists affects the integrity of striatal D2 receptors in Parkinson's patients. NeuroImage Clin 16 (2017), 455–460, 10.1016/j.nicl.2017.08.013.
Raeder, V., Boura, I., Leta, V., Jenner, P., Reichmann, H., Trenkwalder, C., Klingelhoefer, L., Chaudhuri, K.R., Rotigotine transdermal patch for motor and non-motor Parkinson's disease: a review of 12 Years' clinical experience. CNS Drugs 35 (2021), 215–231, 10.1007/s40263-020-00788-4.
Rinne, J.O., Laihinen, A., Ruottinen, H., Ruotsalainen, U., Någren, K., Lehikoinen, P., Oikonen, V., Rinne, U.K., Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11C]raclopride. J. Neurol. Sci. 132 (1995), 156–161, 10.1016/0022-510X(95)00137-Q.
Rose, S.J., Pack, T.F., Peterson, S.M., Payne, K., Borrelli, E., Caron, M.G., Engineered D2R variants reveal the balanced and biased contributions of G-protein and β-arrestin to dopamine-dependent functions. Neuropsychopharmacology 43 (2018), 1164–1173, 10.1038/npp.2017.254.
Shen, Y., McCorvy, J.D., Martini, M.L., Rodriguiz, R.M., Pogorelov, V.M., Ward, K.M., Wetsel, W.C., Liu, J., Roth, B.L., Jin, J., D2 dopamine receptor G protein-biased partial agonists based on cariprazine. J. Med. Chem. 62 (2019), 4755–4771, 10.1021/ACS.JMEDCHEM.9B00508/SUPPL_FILE/JM9B00508_SI_002.CSV.
Shonberg, J., Herenbrink, C.K., López, L., Christopoulos, A., Scammells, P.J., Capuano, B., Lane, J.R., A structure-activity analysis of biased agonism at the dopamine D2 receptor. J. Med. Chem. 56 (2013), 9199–9221, 10.1021/JM401318W/SUPPL_FILE/JM401318W_SI_001.PDF.
Singleton, S., Baptista-Hon, D.T., Edelsten, E., McCaughey, K.S., Camplisson, E., Hales, T.G., TRV130 partial agonism and capacity to induce anti-nociceptive tolerance revealed through reducing available μ-opioid receptor number. Br. J. Pharmacol. 178 (2021), 1855–1868, 10.1111/bph.15409.
Smith, J.S., Lefkowitz, R.J., Rajagopal, S., Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17 (2018), 243–260, 10.1038/nrd.2017.229.
Stepniewski, T.M., Mancini, A., Ågren, R., Torrens-Fontanals, M., Semache, M., Bouvier, M., Sahlholm, K., Breton, B., Selent, J., Mechanistic insights into dopaminergic and serotonergic neurotransmission – concerted interactions with helices 5 and 6 drive the functional outcome. Chem. Sci., 12, 2021, 10990, 10.1039/D1SC00749A.
Urs, N.M., Bido, S., Peterson, S.M., Daigle, T.L., Bass, C.E., Gainetdinov, R.R., Bezard, E., Caron, M.G., Targeting β-arrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2517–E2526, 10.1073/pnas.1502740112.
Verstappen, C.C.P., Bloem, B.R., Haaxma, C.A., Oyen, W.J.G., Horstink, M.W.I.M., Diagnostic value of asymmetric striatal D2 receptor upregulation in Parkinson's disease: an [123I]IBZM and [123I]FP-CIT SPECT study. Eur. J. Nucl. Med. Mol. Imag. 34 (2007), 502–507, 10.1007/s00259-006-0258-4.
Von Moo, E., Harpsøe, K., Hauser, A.S., Masuho, I., Bräuner-Osborne, H., Gloriam, D.E., Martemyanov, K.A., Ligand-directed bias of G protein signaling at the dopamine D2 receptor. Cell Chem. Biol., 0(0), 2021, 10.1016/J.CHEMBIOL.2021.07.004.
Whalen, E.J., Rajagopal, S., Lefkowitz, R.J., Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol. Med. 17 (2011), 126–139, 10.1016/j.molmed.2010.11.004.
Winkelmann, J., Allen, R.P., Högl, B., Inoue, Y., Oertel, W., Salminen, A.V., Winkelman, J.W., Trenkwalder, C., Sampaio, C., Treatment of restless legs syndrome: evidence-based review and implications for clinical practice (Revised 2017). Mov. Disord. 33 (2018), 1077–1091, 10.1002/mds.27260.
Wood, M., Dubois, V., Scheller, D., Gillard, M., Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors. Br. J. Pharmacol. 172 (2015), 1124–1135, 10.1111/bph.12988.
Zahoor, I., Shafi, A., Haq, E., Pharmacological treatment of Parkinson's disease. Park. Dis. Pathog. Clin. Asp., 2018, 129–144, 10.15586/codonpublications.parkinsonsdisease.2018.ch7.
Zhuo, C., Zhu, X., Jiang, R., Ji, F., Su, Z., Xue, R., Zhou, Y., Comparison for efficacy and tolerability among ten drugs for treatment of Parkinson's disease: a network meta-analysis. Sci. Rep., 8, 2017, 10.1038/srep45865.