ChIP-Seq; H3K27ac; RNA-Seq; XIST; complex traits; pig; Biochemistry, Genetics and Molecular Biology (all); Environmental Science (all); Agricultural and Biological Sciences (all); General Agricultural and Biological Sciences; General Environmental Science; General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] The limited knowledge of genomic noncoding and regulatory regions has restricted our ability to decipher the genetic mechanisms underlying complex traits in pigs. In this study, we characterized the spatiotemporal landscape of putative enhancers and promoters and their target genes by combining H3K27ac-targeted ChIP-Seq and RNA-Seq in fetal (prenatal days 74-75) and adult (postnatal days 132-150) tissues (brain, liver, heart, muscle and small intestine) sampled from Asian aboriginal Bama Xiang and European highly selected Large White pigs of both sexes. We identified 101,290 H3K27ac peaks, marking 18,521 promoters and 82,769 enhancers, including peaks that were active across all tissues and developmental stages (which could indicate safe harbor locus for exogenous gene insertion) and tissue- and developmental stage-specific peaks (which regulate gene pathways matching tissue- and developmental stage-specific physiological functions). We found that H3K27ac and DNA methylation in the promoter region of the XIST gene may be involved in X chromosome inactivation and demonstrated the utility of the present resource for revealing the regulatory patterns of known causal genes and prioritizing candidate causal variants for complex traits in pigs. In addition, we identified an average of 1,124 super-enhancers per sample and found that they were more likely to show tissue-specific activity than ordinary peaks. We have developed a web browser to improve the accessibility of the results ( http://segtp.jxau.edu.cn/pencode/?genome=susScr11 ).
Disciplines :
Genetics & genetic processes
Author, co-author :
Zhu, Yaling; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China ; Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
Zhou, Zhimin; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China ; Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
Huang, Tao; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Zhang, Zhen; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Li, Wanbo; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Ling, Ziqi; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Jiang, Tao; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Yang, Jiawen; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Yang, Siyu; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Xiao, Yanyuan; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Charlier, Carole ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics ; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Georges, Michel ; Université de Liège - ULiège > GIGA > GIGA Cardiovascular Sciences - Molecular Biomimetic and Protein Engineering Laboratory ; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
Yang, Bin; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China. binyang@live.cn
Huang, Lusheng; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China. lushenghuang@hotmail.com
This work was supported by the National Natural Science Foundation of China (31790413 and 31760657). We are grateful to colleagues in State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University for sample collection.
Abuín, J.M., Pichel, J.C., Pena, T.F., and Amigo, J. (2015). BigBWA: approaching the Burrows-Wheeler aligner to Big Data technologies. Bioinformatics 31, 4003–4005.
Aiello, D., Patel, K., and Lasagna, E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim Genet 49, 505–519.
Almalki, S.G., and Agrawal, D.K. (2016). Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92, 41–51.
Andersson, L., Archibald, A.L., Bottema, C.D., Brauning, R., Burgess, S. C., Burt, D.W., Casas, E., Cheng, H.H., Clarke, L., Couldrey, C., et al. (2015). Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol 16, 57.
Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Pagès, F., Trajanoski, Z., and Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093.
Chakroun, I., Yang, D., Girgis, J., Gunasekharan, A., Phenix, H., Kærn, M., and Blais, A. (2015). Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis. FASEB J 29, 4738–4755.
Chan, R.Y.Y., Boudreau-Lariviere, C., Angus, L.M., Mankal, F.A., and Jasmin, B.J. (1999). An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc Natl Acad Sci USA 96, 4627–4632.
Charlet, J., Duymich, C.E., Lay, F.D., Mundbjerg, K., Dalsgaard Sørensen, K., Liang, G., and Jones, P.A. (2016). Bivalent regions of cytosine methylation and H3K27 acetylation suggest an active role for DNA methylation at enhancers. Mol Cell 62, 422–431.
Cho, I.C., Park, H.B., Ahn, J.S., Han, S.H., Lee, J.B., Lim, H.T., Yoo, C.K., Jung, E.J., Kim, D.H., Sun, W.S., et al. (2019). A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genet 15, e1008279.
Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107, 21931–21936.
Dedova, I., Harding, A., Sheedy, D., Garrick, T., Sundqvist, N., Hunt, C., Gillies, J., and Harper, C.G. (2009). The importance of brain banks for molecular neuropathological research: the New South Wales Tissue Resource Centre experience. Int J Mol Sci 10, 366–384.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
Foissac, S., Djebali, S., Munyard, K., Vialaneix, N., Rau, A., Muret, K., Esquerré, D., Zytnicki, M., Derrien, T., Bardou, P., et al. (2019). Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol 17, 108.
Frantz, L.A.F., Schraiber, J.G., Madsen, O., Megens, H.J., Bosse, M., Paudel, Y., Semiadi, G., Meijaard, E., Li, N., Crooijmans, R.P.M.A., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol 14, R107.
Friedrich, G., and Soriano, P. (1991). Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5, 1513–1523.
Gallegos, J.E., and Rose, A.B. (2017). Intron DNA sequences can be more important than the proximal promoter in determining the site of transcript initiation. Plant Cell 29, 843–853.
Georges, M., Charlier, C., and Hayes, B. (2019). Harnessing genomic information for livestock improvement. Nat Rev Genet 20, 135–156.
Gong, H., Xiao, S., Li, W., Huang, T., Huang, X., Yan, G., Huang, Y., Qiu, H., Jiang, K., Wang, X., et al. (2019). Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J Anim Breed Genet 136, 3–14.
Gorkin, D.U., Barozzi, I., Zhao, Y., Zhang, Y., Huang, H., Lee, A.Y., Li, B., Chiou, J., Wildberg, A., Ding, B., et al. (2020). An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751.
Han, K., Ren, R., Cao, J., Zhao, S., and Yu, M. (2019a). Genome-wide identification of histone modifications involved in placental development in pigs. Front Genet 10, 277.
Han, X., Xiong, Y., Zhao, C., Xie, S., Li, C., Li, X., Liu, X., Li, K., Zhao, S., and Ruan, J. (2019b). Identification of glyceraldehyde-3-phosphate dehydrogenase gene as an alternative safe harbor locus in pig genome. Genes 10, 660.
Hasler-Rapacz, J., Ellegren, H., Fridolfsson, A.K., Kirkpatrick, B., Kirk, S., Andersson, L., and Rapacz, J. (1998). Identification of a mutation in the low density lipoprotein receptor gene associated with recessive familial hypercholesterolemia in swine. Am J Med Genet 76, 379–386.
Hoffman, G.E., and Schadt, E.E. (2016). variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483.
Hu, Z.L., Park, C.A., Wu, X.L., and Reecy, J.M. (2013). Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 41, D871–D879.
Huang, D., Petrykowska, H.M., Miller, B.F., Elnitski, L., and Ovcharenko, I. (2019). Identification of human silencers by correlating cross-tissue epigenetic profiles and gene expression. Genome Res 29, 657–667.
Jakovcevski, I., Filipovic, R., Mo, Z., Rakic, S., and Zecevic, N. (2009). Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 3, 5.
Javierre, B.M., Burren, O.S., Wilder, S.P., Kreuzhuber, R., Hill, S.M., Sewitz, S., Cairns, J., Wingett, S.W., Várnai, C., Thiecke, M.J., et al. (2016). Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19.
Khan, A., and Mathelier, A. (2017). Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18, 287.
Kirmse, K., Hübner, C.A., Isbrandt, D., Witte, O.W., and Holthoff, K. (2018). GABAergic transmission during brain development: multiple effects at multiple stages. Neuroscientist 24, 36–53.
Kryuchkova-Mostacci, N., and Robinson-Rechavi, M. (2017). A benchmark of gene expression tissue-specificity metrics. Brief Bioinform 18, 205–214.
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M.J., et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330.
Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Lowden, S., Finlayson, H., Brand, T., Willerslev, E., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621.
Li, X., Yang, Y., Bu, L., Guo, X., Tang, C., Song, J., Fan, N., Zhao, B., Ouyang, Z., Liu, Z., et al. (2014). Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24, 501–504.
Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.
Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M.F., Parker, B.J., Washietl, S., Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E., et al. (2011). A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482.
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.
Ma, J., Yang, J., Zhou, L., Ren, J., Liu, X., Zhang, H., Yang, B., Zhang, Z., Ma, H., Xie, X., et al. (2014). A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genet 10, e1004710.
Marahrens, Y., Loring, J., and Jaenisch, R. (1998). Role of the Xist gene in X chromosome choosing. Cell 92, 657–664.
Marks, H., Chow, J.C., Denissov, S., Françoijs, K.J., Brockdorff, N., Heard, E., and Stunnenberg, H.G. (2009). High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19, 1361–1373.
McGregor, C.G.A., and Byrne, G.W. (2017). Porcine to human heart transplantation: is clinical application now appropriate? J Immunol Res 2017, 1–11.
Murtagh, F., and Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31, 274–295.
Nasrallah, R., Imianowski, C.J., Bossini-Castillo, L., Grant, F.M., Dogan, M., Placek, L., Kozhaya, L., Kuo, P., Sadiyah, F., Whiteside, S.K., et al. (2020). A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature 583, 447–452.
Neville, J.J., Orlando, J., Mann, K., McCloskey, B., and Antoniou, M.N. (2017). Ubiquitous Chromatin-opening Elements (UCOEs): applications in biomanufacturing and gene therapy. Biotechnol Adv 35, 557–564.
Nord, A.S., Blow, M.J., Attanasio, C., Akiyama, J.A., Holt, A., Hosseini, R., Phouanenavong, S., Plajzer-Frick, I., Shoukry, M., Afzal, V., et al. (2013). Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531.
Pang, B., and Snyder, M.P. (2020). Systematic identification of silencers in human cells. Nat Genet 52, 254–263.
Papapetrou, E.P., and Schambach, A. (2016). Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24, 678–684.
Poillet-Perez, L., Xie, X., Zhan, L., Yang, Y., Sharp, D.W., Hu, Z.S., Su, X., Maganti, A., Jiang, C., Lu, W., et al. (2018). Autophagy maintains tumour growth through circulating arginine. Nature 563, 569–573.
Popescu, D.M., Botting, R.A., Stephenson, E., Green, K., Webb, S., Jardine, L., Calderbank, E.F., Polanski, K., Goh, I., Efremova, M., et al. (2019). Decoding human fetal liver haematopoiesis. Nature 574, 365–371.
Pott, S., and Lieb, J.D. (2015). What are super-enhancers? Nat Genet 47, 8–12.
Quach, T.T., Massicotte, G., Belin, M.F., Honnorat, J., Glasper, E.R., Devries, A.C., Jakeman, L.B., Baudry, M., Duchemin, A.M., and Kolattukudy, P.E. (2007). CRMP3 is required for hippocampal CA1 dendritic organization and plasticity. FASEB J 22, 401–409.
Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16, 276–277.
Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., Liu, Z., Mu, Y., Yang, S., Ouyang, H., et al. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5, 14253.
Schug, J., Schuller, W.P., Kappen, C., Salbaum, J.M., Bucan, M., and Stoeckert Jr, C.J. (2005). Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 6, R33.
Sengupta, S., and George, R.E. (2017). Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3, 269–281.
Stamatoyannopoulos, J.A., Snyder, M., Hardison, R., Ren, B., Gingeras, T., Gilbert, D.M., Groudine, M., Bender, M., Kaul, R., Canfield, T., et al. (2012). An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13, 418.
Storey, J.D., Bass, A.J., Dabney, A., and Robinson, D. (2020). qvalue: Q-value estimation for false discovery rate control. R package version 2.22.0. Available from: URL: http://github.com/jdstorey/qvalue.
Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., and Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA 108, 7902–7907.
Tsukamoto, O., and Kitakaze, M. (2013). Biochemical and physiological regulation of cardiac myocyte contraction by cardiac-specific myosin light chain kinase. Circ J 77, 2218–2225.
Tukiainen, T., Villani, A.C., Yen, A., Rivas, M.A., Marshall, J.L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., et al. (2017). Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248.
Vaillancourt, K., Bedard, N., Bart, C., Tessier, M., Robitaille, G., Turgeon, N., Frenette, M., Moineau, S., and Vadeboncoeur, C. (2008). Role of galK and galM in galactose metabolism by Streptococcus thermophilus. Appl Environ Microbiol 74, 1264–1267.
Van Laere, A.S., Nguyen, M., Braunschweig, M., Nezer, C., Collette, C., Moreau, L., Archibald, A.L., Haley, C.S., Buys, N., Tally, M., et al. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425, 832–836.
Vigors, S., Sweeney, T., O’Shea, C.J., Kelly, A.K., and O’Doherty, J.V. (2016). Pigs that are divergent in feed efficiency, differ in intestinal enzyme and nutrient transporter gene expression, nutrient digestibility and microbial activity. Animal 10, 1848–1855.
Villar, D., Berthelot, C., Aldridge, S., Rayner, T.F., Lukk, M., Pignatelli, M., Park, T.J., Deaville, R., Erichsen, J.T., Jasinska, A.J., et al. (2015). Enhancer evolution across 20 mammalian species. Cell 160, 554–566.
Wang, L., Zhu, F., Yang, H., Li, J., Li, Y., Ding, X., Xiong, X., Ji, F., Zhou, H., and Yin, Y. (2019). Epidermal growth factor improves intestinal morphology by stimulating proliferation and differentiation of enterocytes and mTOR signaling pathway in weaning piglets. Sci China Life Sci 63, 259–268.
Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., and Young, R.A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319.
Xiong, Y., Han, X., Zhang, J., Zhao, G., Wang, Z., Zhuang, R., Nie, X., Xie, S., Li, C., Li, X., et al. (2020). Identification of ACTB gene as a potential safe harbor locus in pig genome. Mol Biotechnol 62, 589–597.
Younis, S., Schönke, M., Massart, J., Hjortebjerg, R., Sundström, E., Gustafson, U., Björnholm, M., Krook, A., Frystyk, J., Zierath, J.R., et al. (2018). The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proc Natl Acad Sci USA 115, E2048–E2057.
Zhang, J., Zhang, Y., Gong, H., Cui, L., Huang, T., Ai, H., Ren, J., Huang, L., and Yang, B. (2017). Genetic mapping using 1.4M SNP array refined loci for fatty acid composition traits in Chinese Erhualian and Bamaxiang pigs. J Anim Breed Genet 134, 472–483.
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B. E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Modelbased analysis of ChIP-Seq (MACS). Genome Biol 9, R137.
Zhang, Y., Sun, Y., Wu, Z., Xiong, X., Zhang, J., Ma, J., Xiao, S., Huang, L., and Yang, B. (2021). Subcutaneous and intramuscular fat transcriptomes show large differences in network organization and associations with adipose traits in pigs. Sci China Life Sci 64, 1732–1746.
Zhao, R., and Duncan, S.A. (2005). Embryonic development of the liver. Hepatology 41, 956–967.
Zhao, Y., Hou, Y., Xu, Y., Luan, Y., Zhou, H., Qi, X., Hu, M., Wang, D., Wang, Z., Fu, Y., et al. (2021). A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nat Commun 12, 2217.
Zheng, M., Xiao, S., Guo, T., Rao, L., Li, L., Zhang, Z., and Huang, L. (2020). DNA methylomic homogeneity and heterogeneity in muscles and testes throughout Pig Adulthood. Aging 12, 25412–25431.
Zong, X., Xiao, X., Jie, F., Cheng, Y., Jin, M., Yin, Y., and Wang, Y. (2021). YTHDF1 promotes NLRP3 translation to induce intestinal epithelial cell inflammatory injury during endotoxic shock. Sci China Life Sci 64, 1988–1991.
Żylicz, J.J., Bousard, A., Žumer, K., Dossin, F., Mohammad, E., da Rocha, S.T., Schwalb, B., Syx, L., Dingli, F., Loew, D., et al. (2019). The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.e23.