Effects of supercritical carbon dioxide under conditions potentially conducive to sterilization on physicochemical characteristics of a liposome formulation containing apigenin - 2022
Effects of supercritical carbon dioxide under conditions potentially conducive to sterilization on physicochemical characteristics of a liposome formulation containing apigenin
[en] In this work, the effects of four supercritical carbon dioxide (ScCO2) conditions potentially conductive to sterilization, on physicochemical characteristics of a liposome formulation containing apigenin (AG) were investigated. These conditions were: C1 (ScCO2/70 °C/150 bar/240 min), C2 (ScCO2/0.25% water/ 0.15% H2O2)/ 0.5% acetic anhydride/38 °C/85 bar/45 min), C3 (ScCO2/0.08% peracetic acid/35 °C/104 bar/180 min) and C4 (ScCO2/ 200 ppm H2O2/40 °C/270 bar/90 min). The results showed changes in color and a decrease in pH value of liposomes suspension after treatment with all tested conditions. Moreover, a decrease in liposome size with C1, C2 and C3 and an increase in the PDI with C1 and C3 were observed. For zeta potential, a decrease with C1, and an increase with C2 and C3 were found. Concerning the encapsulated AG, a moderate decrease, a strong decrease and a total disappearance were noted with conditions C1, C2 and C3 respectively.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège CERM - Center for Education and Research on Macromolecules - ULiège
Delma, Kouka Luc ; University Joseph KI-ZERBO, Laboratory of Drug Development, Burkina Faso > University of Liège (ULiège), Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Belgium
Penoy, Noémie ; University of Liège (ULiège), Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Belgium
Grignard, Bruno ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Semdé, Rasmané; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, Burkina Faso
Evrard, Brigitte ; University of Liège (ULiège), Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Belgium
Piel, Géraldine ; University of Liège (ULiège), Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Belgium
Language :
English
Title :
Effects of supercritical carbon dioxide under conditions potentially conducive to sterilization on physicochemical characteristics of a liposome formulation containing apigenin
Publication date :
January 2022
Journal title :
Journal of Supercritical Fluids
ISSN :
0896-8446
Publisher :
Elsevier
Volume :
179
Pages :
105418
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ARES CCD - Académie de Recherche et d'Enseignement Supérieur. Coopération au Développement
Funding text :
Authors would like to acknowledge the Academy for research and Higher Education-Development Cooperation Committee (ARES-CCD) for the financial support.
Özer, A.Y., Turker, S., Çolak, S., Korkmaz, M., Kiliç, E., Özalp, M., The effects of gamma irradiation on diclofenac sodium, liposome and noisome ingredients for rheumatoid arthritis. Interv. Med. Appl. Sci. 5:3 (2013), 122–130, 10.1556/imas.5.2013.3.5.
Toh, M.R., Chiu, G.N.C., Liposomes as sterile preparations and limitations of sterilization techniques in liposomal manufacturing. Asian J. Pharm. 8 (2013), 88–95, 10.1016/j.ajps.2013.07.011.
Araki, R., Matsuzaki, T., Nakamura, A., Nakatani, D., Sanada, S., Fu, H.Y., Okuda, K., Yamato, M., Tsuchida, S., Sakata, Y., Minamino, T., Development of a novel one-step production system for injectable liposomes under GMP. Pharm. Dev. Technol. 23:6 (2018), 602–607, 10.1080/10837450.2017.1290106.
Mohammed, A.R., Weston, N., Coombes, A.G.A., Fitzgerald, M., Perrie, Y., Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 285 (2004), 23–34, 10.1016/j.ijpharm.2004.07.010.
Allen, M.T., Cullis, R.P., Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 65 (2013), 36–48, 10.1016/j.addr.2012.09.037.
Pattni, S.B., Chupin, V.V., Torchilin, P.V., New developments in liposomal drug delivery. Chem. Rev. 115 (2015), 10938–10966, 10.1021/acs.chemrev.5b00046.
Revercheron E., Della Porta G., Adami A. Medical device sterilization using supercritical CO2 based mixtures, CHENG 3, 142–148 (2010) 000–000.
Soares, C.G., Learmonth, A.D., Vallejo, C.M., Perez Davila, S., Gonzalez, P., Sousa, A.R., Oliveira, A.L., Supercritical CO2 technology: The next standard sterilization technique?. Mater. Sci. Eng. C 99 (2019), 520–540, 10.1016/j.msec.2019.01.121.
Delma, K.L., Lechanteur, A., Evrard, B., Semdé, R., Piel, G., Sterilization methods of liposomes: drawbacks of conventional methods and perspectives. Int. J. Pharm., 597, 2021, 120271, 10.1016/j.ijpharm.2021.120271.
Delattre, L., Pharmaceutical applications of supercritical carbon dioxide. Ann. Pharm. Fr. 65 (2007), 58–67, 10.1016/s0003-4509(07)90017-6.
Kadimi, U.S., Balasubramanian, D.R., Ganni, U.R., Balaraman, M., Govindarajulu, V., In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide–mediated process. Nanomedicine 3 (2007), 273–280, 10.1016/j.nano.2007.08.003.
Bigazzi, W., Penoy, N., Evrard, B., Piel, G., Supercritical fluid methods: an alternative to conventional methods to prepare liposomes. Chem. Eng. J., 383, 2020, 123106, 10.1016/j.cej.2019.123106.
Leitgeb, M., Knez, Z., Primozic, M., Sustainable technologies for liposome preparation. J. Supercrit. Fluids, 165, 2020, 104984, 10.1016/j.supflu.2020.104984.
Ellis, L.J., Titone, J.C., Tomasko, L.D., Annabi, N., Dehghani, F., Supercritical CO2 sterilization of ultra-high molecular weight polyethylene. J. Supercrit. Fluids 52 (2010), 235–240, 10.1016/j.supflu.2010.01.002.
Burns C.D., Humphrey J.R., Eisenhut R.A., Christensen W.T. Sterilization of drugs using supercritical carbon dioxide sterilisant, US Patent, 8012414B2, 2011.
Karajanagi, S.S., Yoganathan, R., Mammucari, R., Park, H., Cox, J., Zeitels, S.M., Langer, R., Foster, N.R., Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol. Bioeng. 108 (2011), 1716–1725, 10.1002/bit.23105.
Donati, I., Benincasa, M., Foulc, M.P., Turco, G., Toppazzini, M., Solinas, D., Spilimbergo, S., Kikic, I., Paoletti, S., Terminal sterilization of BisGMA-TEGDMA thermoset materials and their bioactive surfaces by supercritical CO2. Biomacromolecules 13 (2012), 1152–1160, 10.1021/bm300053d.
Zani, F., Veneziani, C., Bazzoni, E., Maggi, L., Caponetti, G., Bettini, R., Sterilization of corticosteroids for ocular and pulmonary delivery with supercritical carbon dioxide. Int. J. Pharm. 450:1–2 (2013), 218–224, 10.1016/j.ijpharm.2013.04.055.
Herdegen, V., Felix, A., Haseneder, R., Repke, J.U., Leppchen-Fröhlich, K., Prade, I., Meyer, M., Sterilization of medical products from collagen by means of supercritical CO2. Chem. Eng. Technol. 37:11 (2014), 1891–1895, 10.1002/ceat.201300679.
Bernhardt, A., Wehrl, M., Paul, B., Hochmuth, T., Schumacher, M., Schütz, K., Gelinsky, M., Improved sterilization of sensitive biomaterials with supercritical carbon dioxide at low temperature. PLoS One, 10(6), 2015, 0129205, 10.1371/journal.pone.0129205.
Meyer, M., Prade, I., Leppchen-Fröhlich, K., Felix, A., Herdegen, V., Haseneder, R., Repke, J.U., Sterilization of collagen materials using hydrogen peroxide doted supercritical carbon dioxide and its effects on the materials properties. J. Supercrit. Fluids 102 (2015), 32–39, 10.1016/j.supflu.2015.04.006.
Ribeiro, N., Soares, G.C., Santos-Rosales, V., Concheiro, A., Alvarez-Lorenzo, C., García-González, C.A., Oliveira, A.L., A new era for sterilization based on supercritical CO2 technology. J. Biomed. Mater. Res. Part B Appl. Biomater. 108:2 (2020), 399–428, 10.1002/jbm.b.34398.
Meure, L.A., Foster, N.R., Dehghani, F., Conventional and dense gas techniques for the production of liposomes: a review. AAPS Pharm. SciTech 9:3 (2008), 798–809, 10.1208/s12249-008-9097-x.
Suthar, S.M., Rathva, B.A., Development of liposomal formulation: from formulation to sterilization. World J. Pharm. Res. 8:3 (2019), 1561–1571, 10.20959/wjpr20193-14456.
Penoy, N., Grignard, B., Evrard, B., Piel, G., A supercritical fluid technology for liposome production and comparison with the film hydration method. Int. J. Pharm., 592, 2021, 120093, 10.1016/j.ijpharm.2020.120093.
Kikuchi, H., Carlsson, A., Yachi, K., Hirota, S., Possibility of heat sterilization of liposomes?. Chem. Pharm. Bull. 39:4 (1991), 1018–1022, 10.1248/cpb.39.1018.
Vemuri, S., Rhodes, C.T., Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 70 (1995), 95–111, 10.1016/0031-6865(95)00010-7.