[AB07] B. Adamczewski and Y. Bugeaud. On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. of Math. (2), 165:547-565, 2007. 2
[ACSZ18] J.-P. Allouche, J. Cassaigne, J. Shallit, and L. Q. Zamboni. A taxonomy of morphic sequences. arXiv:1711.10807, 2018. 15
[ARS09] J.-P. Allouche, N. Rampersad, and J. Shallit. Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci., 410:2795-2803, 2009. 52
[AS03] J.-P Allouche and J. O. Shallit. Automatic Sequences, Theory, Applications, Generalizations. Cambridge University Press, 2003. 2
[B60] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math., 6:66-92, 1960. 52
[BDM04] F. Blanchard, F. Durand, and A. Maass. Constant-length substitutions and countable scrambled sets. Nonlinearity, 17:817-833, 2004. 53
[BDM10] X. Bressaud, F. Durand, and A. Maass. On the eigenvalues of finite rank Bratteli-Vershik dynamical systems. Ergod. Th. & Dynam. Sys., 30:639-664, 2010. 59
[BHMV94] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc., 1:191-238, 1994. Corrigendum, Bull. Belg. Math. Soc. 1 (1994), 577. 51,59
[BJKR01] O. Bratteli, P. Jorgensen, K. H. Kim, and F. Roush. Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups. Ergod. Th. & Dynam. Sys., 21:1625-1655, 2001. 59
[BLR88] M. Boyle, D. Lind, and D. Rudolph. The automorphism group of a shift of finite type. Trans. Amer. Math. Soc., 306:71-114, 1988. 2
[Bow75] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin-New York, 1975. 1
[Boy08] M. Boyle. Open problems in symbolic dynamics. In Geometric and probabilistic structures in dynamics, volume 469 of Contemp. Math., pages 69-118. Amer. Math. Soc., Providence, RI, 2008. 2
[CDK17] E. Coven, M. Dekking, and M. Keane. Topological conjugacy of constant length substitution dynamical systems. Indag. Math. (N.S.), 28:91-107, 2017. 3, 4,47, 53
[CDKL14] E. Coven, A. Dykstra, M. Keane, and M. LeMasurier. Topological conjugacy to given constant length substitution minimal systems. Indag. Math. (N.S.), 25:646-651, 2014. 3
[CG86] A. Cerny and J. Gruska. Modular trellises. In G. Rozenberg and A. Salomaa, editors, The Book ofL, pages 45-61. Springer-Verlag, 1986. 59
[CH84] K. Culik and T. Harju. The w-sequence equivalence problem for D0L systems is decidable. J. Assoc. Comput. Mach., 31:282-298, 1984. 58
[Cha18] Émilie Charlier. First-order logic and numeration systems. In Sequences, groups, and number theory, Trends Math., pages 89-141. Birkhauser/Springer, Cham, 2018. 52
[CK15] V. Cyr and B. Kra. The automorphism group of a shift of linear growth: beyond transitivity. Forum Math. Sigma, 3:e5, 27, 2015. 2
[CK16] V. Cyr and B. Kra. The automorphism group of a shift of subquadratic growth. Proc. Amer. Math. Soc., 144:613-621, 2016. 2, 54
[CKL08] E. Coven, M. Keane, and M. Lemasurier. A characterization of the morse minimal set up to topological conjugacy. Ergod. Th. & Dynam. Sys., 28:1443-1451, 2008. 3, 51
[Cob72] A. Cobham. Uniform tag sequences. Math. Systems Theory, 6:164-192, 1972. 52
[Cov72] E. Coven. Endomorphisms of substitution minimal sets. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 20:129-133, 1971/1972. 2,47
[CQY16] Ethan M. Coven, Anthony Quas, and Reem Yassawi. Computing automorphism groups of shifts using atypical equivalence classes. Discrete Anal., pages Paper No. 3, 28, 2016. 2, 3,47
[CRS12] E. Charlier, N. Rampersad, and J. Shallit. Enumeration and decidable properties of automatic sequences. Internat. J. Found. Comput. Sci., 23:1035-1066, 2012. 52
[DDMP16] S. Donoso, F. Durand, A. Maass, and S. Petite. On automorphism groups of low complexity minimal subshifts. Ergod. Th. & Dynam. Sys., 36:64-95, 2016. 2, 54, 59
[Dek78] M. Dekking. The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41:221-239, 1977/78. 53
[DG19] F. Durand and V. Goyheneche. Decidability, arithmetic subsequences and eigenvalues for substitution subshifts. Bull. Belg. Math. Soc. Simon Stevin, 26:591-618, 2019. 31, 32
[DHS99] F. Durand, B. Host, and C. Skau. Substitutive dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys., 19:953-993, 1999. 4, 11, 59
[DL17] F. Durand and J. Leroy. The constant of recognizability is computable for primitive morphisms. J. Integer Seq., 20:Art. 17.4.5, 15, 2017. 16, 17, 18
[DP22] F. Durand and D. Perrin. Dimension Groups and Dynamical Systems: Substitutions, Bratteli Diagrams and Cantor Systems. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022. 16
[Dur98a] F Durand. A characterization of substitutive sequences using return words. Discrete Math., 179:89-101, 1998. 3, 6, 10, 11, 39, 40
[Dur98b] F. Durand. Sur les ensembles d’entiers reconnaissables. J. Théor. Nombres Bordeaux, 10:65-84, 1998. 23
[Dur00] F. Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys., 20:1061-1078, 2000. 2, 3, 20, 32, 47, 53, 54, 58
[Dur12] F. Durand. HD0L w-equivalence and periodicity problems in the primitive case (dedicated to the memory of G. Rauzy). J. of Uniform Distribution Theory, 7:199-215, 2012. 58
[Dur13a] F. Durand. Decidability of the HD0L ultimate periodicity problem. RAIRO - Theoretical Informatics and Applications, 47:201-214, 2013. 6, 7, 31, 34
[Dur13b] F. Durand. Decidability of uniform recurrence of morphic sequences. Internat. J. Found. Comput. Sci., 24:123-146, 2013. 2, 3,4, 7, 11, 14
[Fag97a] I. Fagnot. On the subword equivalence problem for morphic words. Discrete Appl. Math., 75:231-253, 1997. 57
[Fag97b] I. Fagnot. Sur les facteurs des mots automatiques. Theoret. Comput. Sci., 172:67-89, 1997. 3, 48, 51, 52, 58
[Fog02] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and combinatorics, volume 1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. 2
[For97] A. Forrest. K-groups associated with substitution minimal systems. Israel J. Math., 98:101-139, 1997. 59
[FW65] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc., 16:109-114, 1965. 31
[GH55] W. H. Gottschalk and G. A. Hedlund. Topological Dynamics, volume 36 of AMS Colloquium Publications. Amer. Math. Soc., 1955. 26
[GPS95] T. Giordano, I. Putnam, and C. F. Skau. Topological orbit equivalence and C*-crossed products. Internal. J. Math., 469:51-111, 1995. 59
[GS98] C. Goodman-Strauss. Matching rules and substitution tilings. Ann. of Math. (2), 147:181-223, 1998. 59
[Hed69] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory, 3:320-375, 1969. 2
[HJ90] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original. 21
[HK95] B. Hasselblatt and A. Katok. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. 20, 26
[Hon86] J. Honkala. A decision method for the recognizability of sets defined by number systems. RAIRO Inform. Théor. App., 20:395-403, 1986. 52
[Hon08] J. Honkala. Cancellation and periodicity properties of iterated morphisms. Theoret. Comput. Sci., 391:61-64, 2008. 52
[HZ99] C. Holton and L. Q. Zamboni. Descendants of primitive substitutions. Theory Comput. Systems, 32:133-157, 1999. 3
[KM16] K. Klouda and K. Medková. Synchronizing delay for binary uniform morphisms. Theoret. Comput. Sci., 615:12-22,2016. 18
[KR99] K. H. Kim and F. W. Roush. The Williams conjecture is false for irreducible subshifts. Ann. of Math. (2), 149:545-558, 1999. 2
[LM95] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995. 1, 6
[LR13] J. Leroy and G. Richomme. A combinatorial proof of S-adicity for sequences with linear complexity. Integers, 13:Paper No. A5, 19, 2013. 34
[MH40] M. Morse and G. A. Hedlund. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math., 62:1-42, 1940. 55
[Mos92] B. Mossé. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci., 99:327-334, 1992. 16
[Mos96] B. Mossé. Reconnaissabilité des substitutions et complexité des suites automatiques. Bull. Soc. Math. France, 124:329-346, 1996. 16
[Mou16] H. Mousavi. Automatic theorem proving in walnut. CoRR, abs/1603.06017, 2016. 11,52
[Moz89] S. Mozes. Tilings, substitution systems and dynamical systems generated by them. J. Analyse Math., 53:139-186, 1989. 59
[MY21] C. Müllner and R. Yassawi. Automorphisms of automatic shifts. Ergodic Theory Dynam. Systems, 41(5):1530-1559, 2021. 54
[Nek18] V. Nekrashevych. Palindromic subshifts and simple periodic groups of intermediate growth. Ann. of Math. (2), 187:667-719, 2018. 2
[Que10] M. Queffélec. Substitution dynamical systems—spectral analysis. Second Edition, volume 1294 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. 4, 6, 7, 16, 17, 18, 21
[Rig14] M. Rigo. Formal Languages, Automata and Numeration Systems 2, Applications to Recognizability and Decidability. ISTE Wiley, 2014. 2, 51
[Sal87a] O. Salon. Suites automatiques à multi-indices. In Sém. Théor Nombres Bordeaux, volume 4, pages 1-27, 1986-1987. 59
[Sal87b] O. Salon. Suites automatiques àmulti-indices et algébricité. C. R. Acad. Sci. Paris, 305:501-504, 1987. 59
[Sal89] O. Salon. Quelles tuiles! (Pavages apériodiques du plan et automates bidimensionnels). Sém. Théor. Nombres Bordeaux, 1:1-26, 1989. 59
[ST15] V. Salo and I. Torma. Block maps between primitive uniform and pisot substitutions. Ergod. Th. & Dynam. Sys., 35:2292-2310, 2015. 2, 3, 4, 22,48, 54
[Wer09] B. M. Werner. An example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate. Discrete Contin. Dyn. Syst. Ser. S, 2:239-249, 2009. 59
[Wil73] R. F. Williams. Classification of subshifts of finite type. Ann. of Math. (2), 98:120-153; errata, ibid. (2) 99 (1974), 380-381, 1973. 2