[Akiyama and Arnoux 2020] S. Akiyama and P. Arnoux (editors), Substitution and tiling dynamics: introduction to self-inducing structures, Lecture Notes in Mathematics 2273, Springer, 2020. MR Zbl
[Andrieu 2021] M. Andrieu, “A Rauzy fractal unbounded in all directions of the plane”, C. R. Math. Acad. Sci. Paris 359 (2021), 399–407. MR Zbl
[Arnoux 2002] P. Arnoux, “Sturmian sequences”, pp. 143–198 in Substitutions in dynamics, arithmetics and combinatorics, edited by V. Berthé et al., Lecture Notes in Math. 1794, Springer, 2002. MR
[Arnoux and Labbé 2018] P. Arnoux and S. Labbé, “On some symmetric multidimensional continued fraction algorithms”, Ergodic Theory Dynam. Systems 38:5 (2018), 1601–1626. MR Zbl
[Arnoux and Rauzy 1991] P. Arnoux and G. Rauzy, “Représentation géométrique de suites de complexité 2n + 1”, Bull. Soc. Math. France 119:2 (1991), 199–215. MR Zbl
[Arnoux and Starosta 2013] P. Arnoux and v. Starosta, “The Rauzy gasket”, pp. 1–23 in Further developments in fractals and related fields, edited by J. Barral and S. Seuret, Springer, 2013. MR Zbl
[Avila and Delecroix 2019] A. Avila and V. Delecroix, “Some monoids of Pisot matrices”, pp. 21–30 in New trends in one-dimensional dynamics, edited by M. J. Pacifico and P. Guarino, Springer Proc. Math. Stat. 285, Springer, 2019. MR Zbl
[Baldwin 1992] P. R. Baldwin, “A convergence exponent for multidimensional continued-fraction algorithms”, J. Statist. Phys. 66:5-6 (1992), 1507–1526. MR Zbl
[Berthé and Delecroix 2014] V. Berthé and V. Delecroix, “Beyond substitutive dynamical systems: S-adic expansions”, pp. 81–123 in Numeration and substitution 2012, edited by S. Akiyama et al., RIMS Kôkyûroku Bessatsu B46, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014. MR Zbl
[Berthé and Labbé 2015] V. Berthé and S. Labbé, “Factor complexity of S-adic words generated by the Arnoux–Rauzy–Poincaré algorithm”, Adv. in Appl. Math. 63 (2015), 90–130. MR Zbl
[Berthé et al. 2010] V. Berthé, A. Siegel, and J. M. Thuswaldner, “Substitutions, Rauzy fractals and tilings”, pp. 248–323 in Combinatorics, automata and number theory, edited by V. Berthé and M. Rigo, Encyclopedia Math. Appl. 135, Cambridge Univ. Press, 2010. MR Zbl
[Berthé et al. 2015] V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G. Rindone, “Acyclic, connected and tree sets”, Monatsh. Math. 176:4 (2015), 521–550. MR Zbl
[Berthé et al. 2020] V. Berthé, W. Steiner, and J. M. Thuswaldner, “Multidimensional continued fractions and symbolic codings of toral translations”, preprint, 2020. To appear in the Journal of the European Mathematical Society. arXiv 2005.13038
[Berthé et al. 2021] V. Berthé, W. Steiner, and J. M. Thuswaldner, “On the second Lyapunov exponent of some multidimensional continued fraction algorithms”, Math. Comp. 90:328 (2021), 883–905. MR Zbl
[Brentjes 1981] A. J. Brentjes, Multidimensional continued fraction algorithms, Mathematical Centre Tracts 145, Mathematisch Centrum, Amsterdam, 1981. MR Zbl
[Cassaigne 1998] J. Cassaigne, “Sequences with grouped factors”, pp. 211–222 in Developments in Language Theory (Thessa-loniki, 1997), edited by S. Bozapalidis, Aristotle University of Thessaloniki, 1998.
[Cassaigne 2015] J. Cassaigne, “Un algorithme de fractions continues de complexité linéaire”, algorithm, 2015, available at https://www.irif.fr/~dyna3s/Oct2015.
[Cassaigne and Nicolas 2010] J. Cassaigne and F. Nicolas, “Factor complexity”, pp. 163–247 in Combinatorics, automata and number theory, edited by V. Berthé and M. Rigo, Encyclopedia Math. Appl. 135, Cambridge Univ. Press, 2010. MR
[Cassaigne et al. 2017] J. Cassaigne, S. Labbé, and J. Leroy, “A set of sequences of complexity 2n + 1”, pp. 144–156 in Combinatorics on words, edited by S. Brlek et al., Lecture Notes in Comput. Sci. 10432, Springer, 2017. MR Zbl
[Coven and Hedlund 1973] E. M. Coven and G. A. Hedlund, “Sequences with minimal block growth”, Math. Systems Theory 7 (1973), 138–153. MR Zbl
[Delecroix et al. 2013] V. Delecroix, T. Hejda, and W. Steiner, “Balancedness of Arnoux–Rauzy and Brun words”, pp. 119–131 in Combinatorics on words, edited by J. Karhumäki et al., Lecture Notes in Comput. Sci. 8079, Springer, 2013. MR Zbl
[Dumont and Thomas 1989] J.-M. Dumont and A. Thomas, “Systemes de numeration et fonctions fractales relatifs aux substitutions”, Theoret. Comput. Sci. 65:2 (1989), 153–169. MR Zbl
[Fougeron and Skripchenko 2021] C. Fougeron and A. Skripchenko, “Simplicity of spectra for certain multidimensional continued fraction algorithms”, Monatsh. Math. 194:4 (2021), 767–787. MR Zbl
[Furman 2002] A. Furman, “Random walks on groups and random transformations”, pp. 931–1014 in Handbook of dynamical systems, Vol. 1A, edited by B. Hasselblatt and A. Katok, North-Holland, 2002. MR Zbl
[Gheeraert et al. 2022] F. Gheeraert, M. Lejeune, and J. Leroy, “S-adic characterization of minimal ternary dendric shifts”, Ergodic Theory Dynam. Systems 42:11 (2022), 3393–3432. MR
[Hardcastle 2002] D. M. Hardcastle, “The three-dimensional Gauss algorithm is strongly convergent almost everywhere”, Experiment. Math. 11:1 (2002), 131–141. MR Zbl
[Hardcastle and Khanin 2000] D. M. Hardcastle and K. Khanin, “On almost everywhere strong convergence of multi-dimensional continued fraction algorithms”, Ergodic Theory Dynam. Systems 20:6 (2000), 1711–1733. MR Zbl
[Hardcastle and Khanin 2002] D. M. Hardcastle and K. Khanin, “The d-dimensional Gauss transformation: strong convergence and Lyapunov exponents”, Experiment. Math. 11:1 (2002), 119–129. MR Zbl
[Labbé 2015] S. Labbé, “3-dimensional continued fraction algorithms cheat sheets”, preprint, 2015. arXiv 1511.08399
[Lagarias 1993] J. C. Lagarias, “The quality of the Diophantine approximations found by the Jacobi–Perron algorithm and related algorithms”, Monatsh. Math. 115:4 (1993), 299–328. MR Zbl
[Leroy 2014] J. Leroy, “An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1)− p(n) ≤ 2”, Discrete Math. Theor. Comput. Sci. 16:1 (2014), 233–286. MR Zbl
[Lothaire 2002] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications 90, Cambridge University Press, 2002. MR Zbl
[Mönkemeyer 1954] R. Mönkemeyer, “Über Fareynetze in n Dimensionen”, Math. Nachr. 11 (1954), 321–344. MR Zbl
[Morse and Hedlund 1938] M. Morse and G. A. Hedlund, “Symbolic Dynamics”, Amer. J. Math. 60:4 (1938), 815–866. MR Zbl
[Morse and Hedlund 1940] M. Morse and G. A. Hedlund, “Symbolic dynamics II, Sturmian trajectories”, Amer. J. Math. 62 (1940), 1–42. MR Zbl
[Nogueira 1995] A. Nogueira, “The three-dimensional Poincaré continued fraction algorithm”, Israel J. Math. 90:1-3 (1995), 373–401. MR Zbl
[Oseledec 1968] V. I. Oseledec, “A multiplicative ergodic theorem, characteristic Ljapunov, exponents of dynamical systems”, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210. In Russian; translated in Moscow Math. Soc. 19 (1968), pp. 197–231. MR
[Panti 2008] G. Panti, “Multidimensional continued fractions and a Minkowski function”, Monatsh. Math. 154:3 (2008), 247–264. MR Zbl
[Pytheas Fogg and Noûs 2020] N. Pytheas Fogg and C. Noûs, “Symbolic coding of linear complexity for generic translations of the torus, using continued fractions”, preprint, 2020. arXiv 2005.12229
[Rauzy 1982] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France 110:2 (1982), 147–178. MR Zbl
[Schmidt 1980] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer, 1980. MR Zbl
[Schweiger 2000] F. Schweiger, Multidimensional continued fractions, Oxford University Press, 2000. MR Zbl
[Selmer 1961] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Mat. Tidskr. 9 (1961), 37–43, 95. MR Zbl
[Siegel and Thuswaldner 2009] A. Siegel and J. M. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.) 118, Société Mathématique de France, Paris, 2009. MR Zbl
[Zorich 1997] A. Zorich, “Deviation for interval exchange transformations”, Ergodic Theory Dynam. Systems 17:6 (1997), 1477–1499. MR Zbl