[en] Slow-moving landslides exhibit persistent but non-uniform motion at low rates which makes them exceptional natural laboratories to study the mechanisms that control the dynamics of unstable hillslopes. Here we leverage 4.5+ years of satellite-based radar and optical remote sensing data to quantify the kinematics of a slow-moving landslide in the tropical rural environment of the Kivu Rift, with unprecedented high spatial and temporal resolution. We measure landslide motion using sub-pixel image correlation methods and invert these data into dense time series that capture weekly to multi-year changes in landslide kinematics. We cross-validate and compare our satellite-based results with very-high-resolution Unoccupied Aircraft System topographic datasets, and explore how rainfall, simulated pore-water pressure, and nearby earthquakes control the overall landslide behaviour. The landslide exhibited seasonal and multi-year velocity variations that varied across the landslide kinematic units. While rainfall-induced changes in pore-water pressure exerts a primary control on the landslide motion, these alone cannot explain the observed variability in landslide behaviour. We suggest instead that the observed landslide kinematics result from internal landslide dynamics, such as extension, compression, material redistribution, and interactions within and between kinematic units. Our study provides, a rare, detailed overview of the deformation pattern of a landslide located in a tropical environment. In addition, our work highlights the viability of sub-pixel image correlation with long time series of radar-amplitude data to quantify surface deformation in tropical environments where optical data is limited by persistent cloud cover and emphasize the importance of exploiting synergies between multiple types of data to capture the complex kinematic pattern of landslides.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Dille, Antoine; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Department of Geography, Earth System Science, Vrije Universiteit Brussel, Brussels, Belgium
Kervyn, François; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Handwerger, Alexander L.; Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, United States ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, United States
d'Oreye, Nicolas; European Centre for Geodynamics and Seismology, Walferdange, Luxembourg ; National Museum of Natural History, Luxembourg, Luxembourg
De Rauw, Dominique ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR) ; European Centre for Geodynamics and Seismology, Walferdange, Luxembourg ; Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Rio Negro - CONICET, Argentina
Mugaruka Bibentyo, Toussaint; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium ; Département de Géologie, Université Officielle de Bukavu, Bukavu, Congo ; Department of Geology, Ghent University, Ghent, Belgium
Samsonov, Sergey; Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, Canada
Malet, Jean-Philippe; Institut Terre et Environnement de Strasbourg, ITES, CNRS/Université de Strasbourg, Strasbourg, France
Kervyn, Matthieu; Department of Geography, Earth System Science, Vrije Universiteit Brussel, Brussels, Belgium
Dewitte, Olivier; Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Language :
English
Title :
When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series
This article is a contribution in the framework of the project RESIST funded by the Belgian Science Policy (BELSPO) , Belgium ( SR/00/305 ) and the Fonds National de la Recherche, Luxembourg (INTER/STEREOIII/13/05/RESIST/d'Oreye); MODUS (SR/00/358), AfReSlide (BR/121/A2/AfReSlide) and PAStECA (BR/165/A3/PASTECA) research projects funded by BELSPO and RA_S1_RGL_GEORISK and HARISSA funded by the Development Cooperation program of the Royal Museum for Central Africa (Belgium) with support of the Directorate-general Development Cooperation and Humanitarian Aid of Belgium (Belgium). COSMO-SkyMed images were acquired through RESIST and MODUS projects as well as the CEOS Landslide Pilot. The images are under an Italian Space Agency (ASI ) licence. Special thanks go to the Université Officielle de Bukavu , and particularly to the members of the Department of Geology . Together with the support of the Civil Protection of South Kivu , they made possible to execute fieldwork in the study area and were part of many discussions on landslide processes in the area. Part of this research was performed at the Jet Propulsion Laboratory , California Institute of Technology under contract with NASA . We thank Damien Delvaux for sharing field pictures and discussions on the tectonic and geology of the area. We further wish to thank Georgina Bennett, Pablo Gonzalez and Martin Rutzinger for their insightful discussions and recommendations regarding this research.
Alberti, S., Senogles, A., Kingen, K., Booth, A., Castro, P., DeKoekkoek, J., Glover-Cutter, K., Mohney, C., Olsen, M., Leshchinsky, B., The Hooskanaden landslide: historic and recent surge behavior of an active earthflow on the Oregon coast. Landslides., 2020, 10.1007/s10346-020-01466-8.
Albino, F., Smets, B., D'Oreye, N., Kervyn, F., High-resolution TanDEM-X DEM: An accuratemethod to estimate lava flowvolumes at Nyamulagira Volcano (D. R. Congo). J. Geol. Res. Solid Earth, 120, 2015, 10.1002/2015JB011988.
Altena, B., Scambos, T., Fahnestock, M., Kääb, A., Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data. Cryosphere 13 (2019), 795–814, 10.5194/tc-13-795-2019.
Amitrano, D., Guida, R., Dell'Aglio, D., Di Martino, G., Di Martire, D., Iodice, A., Costantini, M., Malvarosa, F., Minati, F., Long-term satellite monitoring of the Slumgullion landslide using space-borne synthetic aperture radar sub-pixel offset tracking. Remote Sens., 11, 2019, 369, 10.3390/rs11030369.
van Asch, T.W.J., Van Beek, L.P.H., Bogaard, T.A., Problems in predicting the mobility of slow-moving landslides. Eng. Geol. 91 (2007), 46–55, 10.1016/j.enggeo.2006.12.012.
Avouac, J.P., Leprince, S., Geodetic Imaging Using Optical Systems, Treatise on Geophysics. Second edition, 2015, Elsevier B.V, 10.1016/B978-0-444-53802-4.00067-1.
Baum, R.L., Reid, M.E., Ground water isolation by low-permeability clays in landslide shear zones. Landslides Res. Theory Pract. 1 (2000), 139–144.
Baum, R.L., Messerich, J., Fleming, R.W., Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu. Hawaii. Environ. Eng. Geosci. 4 (1998), 283–306.
Bennett, G.L., Roering, J.J., Mackey, B.H., Handwerger, A.L., Schmidt, D.A., Guillod, B.P., Historic drought puts the brakes on earthflows in northern California. Geophys. Res. Lett. 43 (2016), 5725–5731, 10.1002/2016GL068378.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40 (2002), 2375–2383, 10.1109/TGRS.2002.803792.
Bontemps, N., Lacroix, P., Doin, M.P., Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sens. Environ. 210 (2018), 144–158, 10.1016/j.rse.2018.02.023.
Bontemps, N., Lacroix, P., Larose, E., Jara, J., Taipe, E., Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat. Commun., 11, 2020, 780, 10.1038/s41467-020-14445-3.
Booth, A.M., Lamb, M.P., Avouac, J.P., Delacourt, C., Landslide velocity, thickness, and rheology from remote sensing: La Clapiere landslide. France. Geophys. Res. Lett. 40 (2013), 4299–4304, 10.1002/grl.50828.
Booth, A.M., McCarley, J., Hinkle, J., Shaw, S., Ampuero, J.-P., Lamb, M.P., Transient reactivation of a deep-seated landslide by Undrained loading captured with repeat airborne and terrestrial Lidar. Geophys. Res. Lett. 45 (2018), 4841–4850, 10.1029/2018GL077812.
Booth, A.M., McCarley, J.C., Nelson, J., Multi-year, three-dimensional landslide surface deformation from repeat lidar and response to precipitation: Mill Gulch earthflow, California. Landslides 17 (2020), 1283–1296, 10.1007/s10346-020-01364-z.
Carey, J.M., Massey, C.I., Lyndsell, B., Petley, D.N., Displacement mechanisms of slow-moving landslides in response to changes in porewater pressure and dynamic stress. Earth Surf. Dyn. 7 (2019), 707–722, 10.5194/esurf-7-707-2019.
Clapuyt, F., Vanacker, V., Schlunegger, F., Van Oost, K., Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models. Earth Surf. Dyn. 5 (2017), 791–806, 10.5194/esurf-5-791-2017.
Cohen-Waeber, J., Bürgmann, R., Chaussard, E., Giannico, C., Ferretti, A., Spatiotemporal patterns of precipitation-modulated landslide deformation from independent component analysis of InSAR time series. Geophys. Res. Lett. 45 (2018), 1878–1887, 10.1002/2017GL075950.
Cook, K.L., Dietze, M., Short communication: a simple workflow for robust low-cost UAV-derived change detection without ground control points. Earth Surf. Dyn. 7 (2019), 1009–1017, 10.5194/esurf-7-1009-2019.
Corominas, J., Moya, J., Ledesma, A., Lloret, A., Gili, J.A., Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2 (2005), 83–96, 10.1007/s10346-005-0049-1.
De Michele, M., Raucoules, D., De Sigoyer, J., Pubellier, M., Chamot-Rooke, N., Three-dimensional surface displacement of the 2008 May 12 Sichuan earthquake (China) derived from Synthetic Aperture Radar: evidence for rupture on a blind thrust. Geophys. J. Int. 183 (2010), 1097–1103, 10.1111/j.1365-246X.2010.04807.x.
Debella-Gilo, M., Kääb, A., Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 115 (2011), 130–142, 10.1016/j.rse.2010.08.012.
Delacourt, C., Allemand, P., Casson, B., Vadon, H., Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett. 31 (2004), 1–5, 10.1029/2004GL020193.
Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B., Grandjean, P., Pambrun, C., Varel, E., Remote-sensing techniques for analysing landslide kinematics: a review. Bull. Soc. Geol. Fr. 178 (2007), 89–100, 10.2113/gssgfbull.178.2.89.
Delbridge, B.G., Bürgmann, R., Fielding, E., Hensley, S., Schulz, W.H., Three-dimensional surface deformation derived from airborne interferometric UAVSAR: application to the Slumgullion landslide. J. Geophys. Res. Solid Earth 121 (2016), 3951–3977, 10.1002/2015JB012559.
Delvaux, D., Mulumba, J.-L.L., Sebagenzi, M.N.S., Bondo, S.F., Kervyn, F., Havenith, H.-B.B., Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system). J. Afr. Earth Sci. 134 (2017), 831–855, 10.1016/j.jafrearsci.2016.10.004.
Depicker, A., Jacobs, L., Delvaux, D., Havenith, H.-B., Maki Mateso, J.-C., Govers, G., Dewitte, O., The added value of a regional landslide susceptibility assessment: the western branch of the East African Rift. Geomorph., 353, 2020, 17, 10.1016/j.geomorph.2019.106886.
Derauw, D., Nicolas, D., Jaspard, M., Caselli, A., Samsonov, S., Ongoing automated ground deformation monitoring of Domuyo - Laguna del Maule area (Argentina) using Sentinel-1 MSBAS time series: methodology description and first observations for the period 2015–2020. J. S. Am. Earth Sci., 104, 2020, 102850, 10.1016/j.jsames.2020.102850.
Dewitte, O., Dille, A., Depicker, A., Kubwimana, D., Maki Mateso, J.-C., Mugaruka Bibentyo, T., Uwihirwe, J., Monsieurs, E., Constraining landslide timing in a data-scarce context: from recent to very old processes in the tropical environment of the North Tanganyika-Kivu Rift region. Landslides 18 (2021), 161–177, 10.1007/s10346-020-01452-0.
Dewitte, O., Jasselette, J.C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., Demoulin, A., Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng. Geol. 99 (2008), 11–22, 10.1016/j.enggeo.2008.02.006.
Dille, A., Kervyn, F., Mugaruka Bibentyo, T., Delvaux, D., Ganza, G.B., Ilombe Mawe, G., Kalikone Buzera, C., Safari Nakito, E., Moeyersons, J., Monsieurs, E., Nzolang, C., Smets, B., Kervyn, M., Dewitte, O., Causes and triggers of deep-seated hillslope instability in the tropics – Insights from a 60-year record of Ikoma landslide (DR Congo). Geomorph., 345, 2019, 13, 10.1016/j.geomorph.2019.106835.
Dzurisin, D., Lu, Z., Interferometric synthetic-aperture radar (InSAR). Dzurisin, D., (eds.) Volcano Deformation: New Geodetic Monitoring Techniques, 2006, Springer Science & Business Media.
Elliott, J.R., de Michele, M., Gupta, H.K., Earth observation for crustal tectonics and earthquake hazards. Surv. Geophys., 2020, 10.1007/s10712-020-09608-2.
Elliott, J.R., Walters, R.J., Wright, T.J., The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 7 (2016), 1–16, 10.1038/ncomms13844.
Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A., Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf. Dyn. 4 (2016), 359–389, 10.5194/esurf-4-359-2016.
Emberson, R., Kirschbaum, D., Stanley, T., New global characterization of landslide exposure. Nat. Hazards Earth Syst. Sci. 30 (2020), 1–21, 10.5194/nhess-2019-434.
Fielding, E.J., Liu, Z., Stephenson, O.L., Zhong, M., Liang, C., Moore, A., Yun, S.H., Simons, M., Surface deformation related to the 2019 Mw7.1 and 6.4 ridgecrest earthquakes in california from GPS, SAR interferometry, and SAR pixel offsets. Seismol. Res. Lett. 91 (2020), 2035–2046, 10.1785/0220190302.
Froude, M.J., Petley, D.N., Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18 (2018), 2161–2181, 10.5194/nhess-18-2161-2018.
Guo, L., Li, J., Li, Zhi-wei, Wu, L., Li, X., Hu, J., Li, Hui-lin, Li, Hong-yi, Miao, Z., Li, Zhong-qin, The surge of the Hispar glacier, Central Karakoram: SAR 3-D flow velocity time series and thickness changes. J. Geophys. Res. Solid Earth, 125, 2020, 10.1029/2019JB018945.
Handwerger, A.L., Roering, J.J., Schmidt, D.A., Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett. 377–378 (2013), 239–247, 10.1016/j.epsl.2013.06.047.
Handwerger, A.L., Roering, J.J., Schmidt, D.a., Rempel, A.W., Kinematics of earthflows in the northern California coast ranges using satellite interferometry. Geomorph. 246 (2015), 321–333, 10.1016/j.geomorph.2015.06.003.
Handwerger, A.L., Rempel, A.W., Skarbek, R.M., Roering, J.J., Hilley, G.E., Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc. Natl. Acad. Sci. 113 (2016), 10281–10286, 10.1073/pnas.1607009113.
Handwerger, A.L., Fielding, E.J., Huang, M.H., Bennett, G.L., Liang, C., Schulz, W.H., Widespread initiation, reactivation, and acceleration of landslides in the northern California coast ranges due to extreme rainfall. J. Geophys. Res. Earth Surf. 124 (2019), 1782–1797, 10.1029/2019JF005035.
Handwerger, A.L., Huang, M.-H.H., Fielding, E.J., Booth, A.M., Bürgmann, R., A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 9 (2019), 1–12, 10.1038/s41598-018-38300-0.
Hendrickx, H., De Sloover, L., Stal, C., Delaloye, R., Nyssen, J., Frankl, A., Talus slope geomorphology investigated at multiple time scales from high-resolution topographic surveys and historical aerial photographs (Sanetsch Pass, Switzerland). Earth Surf. Process. Landf., 2020, 10.1002/esp.4989.
Hilley, G., Bürgmann, R., Ferretti, A., Rocca, F., Novali, F., Dynamics of slow-moving landslides from permanent scatterer analysis. Science (80-. ) 304 (2004), 1952–1955.
Hooper, A.J., A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 35 (2008), 1–5, 10.1029/2008GL034654.
Hu, X., Bürgmann, R., Fielding, E.J., Lee, H., Internal kinematics of the Slumgullion landslide (USA) from high-resolution UAVSAR InSAR data. Remote Sens. Environ., 251, 2020, 112057, 10.1016/j.rse.2020.112057.
Hu, X., Bürgmann, R., Schulz, W.H., Fielding, E.J., Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing. Nat. Commun. 11 (2020), 1–9, 10.1038/s41467-020-16617-7.
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., NASA global precipitation measurement - integrated multi-satellite retrievals for GPM. Algorithm Theoretical Basis Document, 2019, v06.
Hungr, O., Leroueil, S., Picarelli, L., The Varnes classification of landslide types, an update. Landslides 11 (2014), 167–194, 10.1007/s10346-013-0436-y.
Iverson, R.M., Landslide triggering by rain infiltration. Water Resour. Res. 36 (2000), 1897–1910, 10.1029/2000WR900090.
Iverson, R.M., Major, J.J., Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations. Geol. Soc. Am. Bull. 99 (1987), 579–594.
James, M.R., Robson, S., Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 39 (2014), 1413–1420, 10.1002/esp.3609.
Keefer, D.K., Investigating landslides caused by earthquakes - a historical review. Surv. Geophys. 23 (2002), 473–510, 10.1023/A:1021274710840.
Lacroix, P., Berthier, E., Maquerhua, E.T., Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens. Environ. 165 (2015), 148–158, 10.1016/j.rse.2015.05.010.
Lacroix, P., Araujo, G., Hollingsworth, J., Taipe, E., Self-entrainment motion of a slow-moving landslide inferred from landsat-8 time series. J. Geophys. Res. Earth Surf., 2019, 10.1029/2018JF004920 2018JF004920.
Lacroix, P., Handwerger, A.L., Bièvre, G., Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 1 (2020), 404–419, 10.1038/s43017-020-0072-8.
Leprince, S., Barbot, S., Ayoub, F., Avouac, J.P., Automatic, precise, Ortho-rectification and Coregistration for satellite image correlation, Application to Ground Deformation Measurement. IEEE J. Geosci. Rem. Sens. 45 (2007), 1529–1558, 10.1109/TGRS.2006.888937.
Li, M., Zhang, L., Shi, X., Liao, M., Yang, M., Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking. Remote Sens. Environ. 221 (2019), 80–93, 10.1016/j.rse.2018.11.006.
Lissak, C., Bartsch, A., De Michele, M., Gomez, C., Maquaire, O., Raucoules, D., Roulland, T., Remote sensing for assessing landslides and associated hazards. Surv. Geophys., 2020, 10.1007/s10712-020-09609-1.
Mackey, B.H., Roering, J.J., Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River. California. Bull. Geol. Soc. Am. 123 (2011), 1427–1447, 10.1130/B30306.1.
Malet, J.-P., Maquaire, O., Calais, E., The use of global positioning system techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorph. 43 (2002), 33–54, 10.1016/S0169-555X(01)00098-8.
Manconi, A., Casu, F., Ardizzone, F., Bonano, M., Cardinali, M., De Luca, C., Gueguen, E., Marchesini, I., Parise, M., Vennari, C., Lanari, R., Guzzetti, F., Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Nat. Hazards Earth Syst. Sci. 14 (2014), 1835–1841, 10.5194/nhess-14-1835-2014.
Massey, C.I., Petley, D.N., McSaveney, M.J., Patterns of movement in reactivated landslides. Eng. Geol. 159 (2013), 1–19, 10.1016/j.enggeo.2013.03.011.
Massey, C.I., Petley, D.N., McSaveney, M.J., Archibald, G., Basal sliding and plastic deformation of a slow, reactivated landslide in New Zealand. Eng. Geol. 208 (2016), 11–28, 10.1016/j.enggeo.2016.04.016.
Migon, P., Mass movement and landscape evolution in weathered granite and gneiss terrains. Geol. Soc. London Eng. Geol. Spec. Publ. 23 (2010), 33–45, 10.1144/EGSP23.4.
Milillo, P., Fielding, E.J., Shulz, W.H., Delbridge, B., Burgmann, R., COSMO-SkyMed spotlight interferometry over rural areas: the slumgullion landslide in Colorado, USA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (2014), 2919–2926, 10.1109/JSTARS.2014.2345664.
Moeyersons, J., Tréfois, P., Lavreau, J., Alimasi, D., Badriyo, I., Mitima, B., Mundala, M., Munganga, D.O., Nahimana, L., A geomorphological assessment of landslide origin at Bukavu, Democratic Republic of the Congo. Eng. Geol. 72 (2004), 73–87, 10.1016/j.enggeo.2003.06.003.
Monsieurs, E., The Potential of Satellite Rainfall Estimates in Solving Regional Landslide Hazard Modelling in Data-Scarce Contexts. 2020, Royal Museum for Central Africa / Université de Liège.
Monsieurs, E., Jacobs, L., Michellier, C., Basimike Tchangaboba, J., Ganza, G.B., Kervyn, F., Maki Mateso, J.-C., Mugaruka Bibentyo, T., Kalikone Buzera, C., Nahimana, L., Ndayisenga, A., Nkurunziza, P., Thiery, W., Demoulin, A., Kervyn, M., Dewitte, O., Landslide inventory for hazard assessment in a data-poor context: a regional-scale approach in a tropical African environment. Landslides 15 (2018), 2195–2209, 10.1007/s10346-018-1008-y.
Nereson, A.L., Davila Olivera, S., Finnegan, N.J., Field and remote-sensing evidence for hydro-mechanical isolation of a long-lived earthflow in Central California. Geophys. Res. Lett. 45 (2018), 9672–9680, 10.1029/2018GL079430.
Osmanoğlu, B., Sunar, F., Wdowinski, S., Cabral-Cano, E., Time series analysis of InSAR data: methods and trends. ISPRS J. Photogramm. Remote Sens. 115 (2016), 90–102, 10.1016/j.isprsjprs.2015.10.003.
Oth, A., Barrière, J., d'Oreye, N., Mavonga, G., Subira, J., Mashagiro, N., Kadufu, B., Fiama, S., Celli, G., de Bigirande, J.D., Ntenge, A.J., Habonimana, L., Bakundukize, C., Kervyn, F., KivuSNet: the first dense broadband seismic network for the Kivu rift region (Western branch of east African rift). Seismol. Res. Lett. 88 (2017), 49–60, 10.1785/0220160147.
Pasteels, P., Villeneuve, M., De Paepe, P., Klerkx, J., Timing of the volcanism of the southern Kivu province: implications for the evolution of the western branch of the east African rift system. Earth Planet. Sci. Lett. 94 (1989), 353–363.
Petley, D.N., Carey, J.M., Ng, K.-Y., Massey, C.I., Froude, M.J., Understanding patterns of movement for slow moving landslides. Alexander, G., Chin, C., (eds.) 20th Symposium of the New Zealand Geotechnical Society. New Zealand Geotechnical Society, 2017, 1–11.
Raucoules, D., de Michele, M., Malet, J.P., Ulrich, P., Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR). Application to La Valette landslide (South French Alps). Remote Sens. Environ. 139 (2013), 198–204, 10.1016/j.rse.2013.08.006.
Rupnik, E., Daakir, M., Pierrot-Deseilligny, M., MicMac – a free, open-source solution for photogrammetry. Open Geospatial Data, Softw. Stand, 2, 2017, 14, 10.1186/s40965-017-0027-2.
Samsonov, S., d'Oreye, N., Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys. J. Int. 191 (2012), 1095–1108, 10.1111/j.1365-246X.2012.05669.x.
Samsonov, S., D'Oreye, N., Multidimensional Small Baseline Subset (MSBAS) for two-dimensional deformation analysis: case study Mexico City. Can. J. Remote. Sens. 43 (2017), 318–329, 10.1080/07038992.2017.1344926.
Samsonov, S., Dille, A., Dewitte, O., Kervyn, F., D'Oreye, N., Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: a new method illustrated on a slow-moving landslide. Eng. Geol., 266, 2020, 10.1016/j.enggeo.2019.105471.
Sánchez-gámez, P., Navarro, F.J., Glacier surface velocity retrieval using D-InSAR and offset tracking techniques applied to ascending and descending passes of Sentinel-1 data for southern Ellesmere ice caps. Canadian Arctic. Remote Sens., 9, 2017, 442, 10.3390/rs9050442.
Scaioni, M., Longoni, L., Melillo, V., Papini, M., Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens. 6 (2014), 5909–5937, 10.3390/rs60x000x.
Scheffler, D., Hollstein, A., Diedrich, H., Segl, K., Hostert, P., AROSICS: An automated and robust open-source image co-registration software for multi-sensor satellite data. Remote Sens., 2017, 9, 10.3390/rs9070676.
Schlögel, R., Doubre, C., Malet, J.P., Masson, F., Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorph. 231 (2015), 314–330, 10.1016/j.geomorph.2014.11.031.
Schulz, W.H., Kean, J.W., Wang, G., Landslide movement in Southwest Colorado triggered by atmospheric tides. Nat. Geosci. 2 (2009), 863–866, 10.1038/ngeo659.
Schulz, W.H., McKenna, J.P., Kibler, J.D., Biavati, G., Relations between hydrology and velocity of a continuously moving landslide-evidence of pore-pressure feedback regulating landslide motion?. Landslides 6 (2009), 181–190, 10.1007/s10346-009-0157-4.
Schulz, W.H., Coe, J.a., Ricci, P.P., Smoczyk, G.M., Shurtleff, B.L., Panosky, J., Landslide kinematics and their potential controls from hourly to decadal timescales: insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data. Geomorph. 285 (2017), 121–136, 10.1016/j.geomorph.2017.02.011.
Singleton, A., Li, Z., Hoey, T., Muller, J.P., Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 147 (2014), 133–144, 10.1016/j.rse.2014.03.003.
Stumpf, A., Malet, J.P., Allemand, P., Ulrich, P., Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J. Photogramm. Remote Sens. 95 (2014), 1–12, 10.1016/j.isprsjprs.2014.05.008.
Stumpf, A., Malet, J.P., Delacourt, C., Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ. 189 (2017), 40–55, 10.1016/j.rse.2016.11.007.
Stumpf, A., Michéa, D., Malet, J.-P., Improved co-registration of Sentinel-2 and Landsat-8 imagery for earth surface motion measurements. Remote Sens., 10, 2018, 160, 10.3390/rs10020160.
Sun, L., Muller, J.P., Evaluation of the use of sub-pixel offset tracking techniques to monitor landslides in densely vegetated steeply sloped areas. Remote Sens., 2016, 8, 10.3390/rs8080659.
Sun, L., Muller, J.-P.P., Chen, J., Time series analysis of very slow landslides in the three Gorges region through small baseline SAR offset tracking. Remote Sens., 9, 2017, 1314, 10.3390/rs9121314.
Team, Planet, Planet Application Program Interface: In Space for Life on Earth [WWW Document]. URL https://api.planet.com, 2020.
Thomas, M.F., Geomorphology in the Tropics: A Study of Weathering and Denudation in Low Latitudes. 1994, John Wiley & Sons.
Turner, D., Lucieer, A., de Jong, S.M., Time series analysis of landslide dynamics using an Unmanned Aerial Vehicle (UAV). Remote Sens. 7 (2015), 1736–1757, 10.3390/rs70201736.
USGS, USGS Earthquake Hazards Program [WWW Document]. URL https://earthquake.usgs.gov/, 2020.
Wasowski, J., Bovenga, F., Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: current issues and future perspectives. Eng. Geol. 174 (2014), 103–138, 10.1016/j.enggeo.2014.03.003.
Xu, Y., Lu, Z., Schulz, W.H., Kim, J., Twelve-year dynamics and rainfall thresholds for alternating creep and rapid movement of the Hooskanaden landslide from integrating InSAR, pixel offset tracking, and borehole and hydrological measurements. J. Geophys. Res. Earth Surf., 2020, 10.1029/2020JF005640.