[en] Primary graft dysfunction (PGD) is a major determinant of morbidity and mortality following lung transplantation. Delineating basic mechanisms and molecular signatures of PGD remain a fundamental challenge. This pilot study examines if the pulmonary volatile organic compound (VOC) spectrum relate to PGD and postoperative outcomes. The VOC profiles of 58 bronchoalveolar lavage fluid (BALF) and blind bronchial aspirate samples from 35 transplant patients were extracted using solid-phase-microextraction and analyzed with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. The support vector machine algorithm was used to identify VOCs that could differentiate patients with severe from lower grade PGD. Using 20 statistically significant VOCs from the sample headspace collected immediately after transplantation (< 6 h), severe PGD was differentiable from low PGD with an AUROC of 0.90 and an accuracy of 0.83 on test set samples. The model was somewhat effective for later time points with an AUROC of 0.80. Three major chemical classes in the model were dominated by alkylated hydrocarbons, linear hydrocarbons, and aldehydes in severe PGD samples. These VOCs may have important clinical and mechanistic implications, therefore large-scale study and potential translation to breath analysis is recommended.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Stefanuto, Pierre-Hugues ; Université de Liège - ULiège > Molecular Systems (MolSys) ; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
Romano, Rosalba; Department of Surgery and Cancer, Section of Anaesthetics, Imperial College of London, London, UK ; Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK
Rees, Christiaan A; Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
Nasir, Mavra; Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
Thakuria, Louit; Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK
Simon, Andre; Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK
Reed, Anna K; Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK
Marczin, Nandor; Department of Surgery and Cancer, Section of Anaesthetics, Imperial College of London, London, UK ; Harefield Hospital, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK ; Department of Anesthesia and Intensive Care, Semmelweis University, Budapest, Hungary
Hill, Jane E; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. jane.hill@ubc.ca ; Geisel School of Medicine, Dartmouth College, Hanover, NH, USA. jane.hill@ubc.ca ; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada. jane.hill@ubc.ca
Language :
English
Title :
Volatile organic compound profiling to explore primary graft dysfunction after lung transplantation.
Christie, J. D. et al. Report of the ISHLT working group on primary lung graft dysfunction part II: Definition. A consensus statement of the international society for heart and lung transplantation. J. Heart Lung Transpl. 24(10), 1454–1459. 10.1016/j.healun.2004.11.049 (2005). DOI: 10.1016/j.healun.2004.11.049
Christie, J. D. et al. The registry of the international society for heart and lung transplantation: Twenty-seventh official adult lung and heart-lung transplant report2010. J. Heart Lung Transpl. 29(10), 1104–1118. 10.1016/j.healun.2010.08.004 (2010). DOI: 10.1016/j.healun.2010.08.004
Christie, J. D. et al. Impact of primary graft failure on outcomes following lung transplantation. Chest 127(1), 161–165. 10.1378/chest.127.1.161 (2005). DOI: 10.1378/chest.127.1.161
Daud, S. A. et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am. J. Respir. Crit. Care Med. 175(5), 507–513. 10.1164/rccm.200608-1079OC (2007). DOI: 10.1164/rccm.200608-1079OC
Diamond, J. M. et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am. J. Respir Crit. Care Med. 187(5), 527–534. 10.1164/rccm.201210-1865OC (2013). DOI: 10.1164/rccm.201210-1865OC
Lee, G. M. Early post-mortem changes and stages of decomposition in exposed cadavers. Exp. Appl. Acarol. 49(1–2), 21–36. 10.1007/s10493-009-9284-9 (2009). DOI: 10.1007/s10493-009-9284-9
Christie, J. D. et al. Plasma levels of receptor for advanced glycation end products, blood transfusion, and risk of primary graft dysfunction. Am. J. Respir. Crit. Care Med. 180(10), 1010–1015. 10.1164/rccm.200901-0118OC (2009). DOI: 10.1164/rccm.200901-0118OC
Suberviola, B. et al. Role of biomarkers in early infectious complications after lung transplantation. PLoS ONE 12(7), 1–14. 10.1371/journal.pone.0180202 (2017). DOI: 10.1371/journal.pone.0180202
Cantu, E. et al. Gene set enrichment analysis identifies key innate immune pathways in primary graft dysfunction after lung transplantation. Am. J. Transpl. 13(7), 1898–1904. 10.1111/ajt.12283 (2013). DOI: 10.1111/ajt.12283
Anraku, M. et al. Impact of human donor lung gene expression profiles on survival after lung transplantation: A case-control study. Am. J. Transpl. 8(10), 2140–2148. 10.1111/j.1600-6143.2008.02354.x (2008). DOI: 10.1111/j.1600-6143.2008.02354.x
Ray, M., Dharmarajan, S., Freudenberg, J., Zhang, W. & Patterson, G. A. Expression profiling of human donor lungs to understand primary graft dysfunction after lung transplantation. Am. J. Transpl. 7(10), 2396–2405. 10.1111/j.1600-6143.2007.01918.x (2007). DOI: 10.1111/j.1600-6143.2007.01918.x
Kuppers, L. et al. Breath volatile organic compounds of lung transplant recipients with and without chronic lung allograft dysfunction. J. Breath Res. 10.1088/1752-7163/aac5af (2018). DOI: 10.1088/1752-7163/aac5af
Sato, K. et al. In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: A model for ARDS. FASEB J. 16(13), 1713–1720. 10.1096/fj.02-0331com (2002). DOI: 10.1096/fj.02-0331com
Frank Kneepkens, C. M., Lepage, G. & Roy, C. C. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic. Biol. Med. 17(2), 127–160. 10.1016/0891-5849(94)90110-4 (1994). DOI: 10.1016/0891-5849(94)90110-4
Diamond, J. M. et al. The relationship between plasma lipid peroxidation products and primary graft dysfunction after lung transplantation is modified by donor smoking and reperfusion hyperoxia. J. Heart Lung Transpl. 35(4), 500–507. 10.1016/j.healun.2015.12.012 (2016). DOI: 10.1016/j.healun.2015.12.012
Grob, N. M., Aytekin, M. & Dweik, R. A. Biomarkers in exhaled breath condensate: A review of collection, processing and analysis. J. Breath Res. 2(3), 37004 (2008). DOI: 10.1088/1752-7155/2/3/037004
Cikach, F. S. & Dweik, R. A. Cardiovascular biomarkers in exhaled breath. Prog. Cardiovasc. Dis. 55(1), 34–43. 10.1016/j.pcad.2012.05.005 (2012). DOI: 10.1016/j.pcad.2012.05.005
Bos, L. D. J. et al. Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur. Respir J. 44(1), 188–197. 10.1183/09031936.00005614 (2014). DOI: 10.1183/09031936.00005614
Nasir, M. et al. Volatile molecules from bronchoalveolar lavage fluid can “rule-in” Pseudomonas aeruginosa and “rule-out” Staphylococcus aureus infections in cystic fibrosis patients. Sci. Rep. 10.1038/s41598-017-18491-8 (2018). DOI: 10.1038/s41598-017-18491-8
Zanella, D. et al. Comparison of the effect of chemically and biologically induced inflammation on the volatile metabolite production of lung epithelial cells by GC×GC-TOFMS. Analyst. 145(15), 5148–5157. 10.1039/d0an00720j (2020). DOI: 10.1039/d0an00720j
Beauchamp, J., Davis, C. & Pleil, J. Breathborne Biomarkers and the Human Volatilome. 2nd Edition. (Beauchamp, J., Davis, C., Pleil, J., eds.). Elsevier B.V. (2020).
Snell, G. I. et al. Report of the ISHLT working group on primary lung graft dysfunction, part I: Definition and grading—A 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J. Heart Lung Transpl. 36(10), 1097–1103. 10.1016/j.healun.2017.07.021 (2017). DOI: 10.1016/j.healun.2017.07.021
Prekker, M. E. et al. Validation of the proposed international society for heart and lung transplantation grading system for primary graft dysfunction after lung transplantation. J. Heart Lung Transpl. 25(4), 371–378. 10.1016/j.healun.2005.11.436 (2006). DOI: 10.1016/j.healun.2005.11.436
Shah, R. J. et al. A panel of lung injury biomarkers enhances the definition of primary graft dysfunction (PGD) after lung transplantation. J. Heart Lung Transpl. 31(9), 942–949. 10.1016/j.healun.2012.05.001 (2012). DOI: 10.1016/j.healun.2012.05.001
Pottecher, J. et al. Increased extravascular lung water and plasma biomarkers of acute lung injury precede oxygenation impairment in primary graft dysfunction after lung transplantation. Transplantation 101(1), 112–121. 10.1097/TP.0000000000001434 (2017). DOI: 10.1097/TP.0000000000001434
Bossuyt, P. M. et al. Towards complete and, accurate reporting of studies of diagnostic accuracy: The STARD initiative. Br. Med. J. 326(7379), 41–44. 10.1136/bmj.326.7379.41 (2003). DOI: 10.1136/bmj.326.7379.41
Rees, C. A. et al. Snif fi ng out the hypoxia volatile metabolic signature of Aspergillus fumigatus. J. Breath. 11, 036003 (2017). DOI: 10.1088/1752-7163/aa7b3e
Rees, C. A. et al. Volatile metabolic diversity of Klebsiella pneumoniae in nutrient- replete conditions. Metabolomics 10.1007/s11306-016-1161-z (2017). DOI: 10.1007/s11306-016-1161-z
Mellors, T. R. et al. Identification of Mycobacterium tuberculosis using volatile biomarkers in culture and exhaled breath. J. Breath Res. 10.1088/1752-7163/aacd18 (2018). DOI: 10.1088/1752-7163/aacd18
Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422. 10.1108/03321640910919020 (2002). DOI: 10.1108/03321640910919020
Robroeks, C. M. et al. Exhaled volatile organic compounds predict exacerbations of childhood asthma in a 1-year prospective study. Eur. Respir. J. 42(1), 98–106. 10.1183/09031936.00010712 (2013). DOI: 10.1183/09031936.00010712
Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2019).
Shah, R. J. et al. Objective estimates improve risk stratification for primary graft dysfunction after lung transplantation. Am. J. Transpl. 15(8), 2188–2196. 10.1111/ajt.13262 (2015). DOI: 10.1111/ajt.13262
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3(3), 211–221. 10.1007/s11306-007-0082-2 (2007). DOI: 10.1007/s11306-007-0082-2
Dimandja, J. M. D. et al. Standardized test mixture for the characterization of comprehensive two-dimensional gas chromatography columns: The Phillips mix. J. Chromatogr. 1019, 261–272 (2003). DOI: 10.1016/j.chroma.2003.09.027
Marczin, N. et al. Outcomes of minimally invasive lung transplantation in a single centre: The routine approach for the future or do we still need clamshell incision?. Interact. Cardiovasc. Thorac. Surg. 22(5), 537–545. 10.1093/icvts/ivw004 (2016). DOI: 10.1093/icvts/ivw004
Sabashnikov, A. et al. Risk factors predictive of one-year mortality after lung transplantation. Eur. J. Cardio-thoracic. Surg. 46(6), e82–e88. 10.1093/ejcts/ezu383 (2014). DOI: 10.1093/ejcts/ezu383
Loor, G. et al. The OCS Lung EXPAND international trial interim results. J. Heart Lung Transpl. 35(4), S68–S69. 10.1016/j.healun.2016.01.187 (2016). DOI: 10.1016/j.healun.2016.01.187
Warnecke, G. et al. Normothermic ex-vivo preservation with the portable Organ Care System Lung device for bilateral lung transplantation (INSPIRE): A randomised, open-label, non-inferiority, phase 3 study. Lancet Respir. Med. 10.1016/S2213-2600(18)30136-X (2018). DOI: 10.1016/S2213-2600(18)30136-X
Mohite, P. N. et al. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation. Perfus (United Kingdom). 10.1177/0267659115570721 (2015). DOI: 10.1177/0267659115570721
Zeriouh, M. et al. Utilization of the organ care system for bilateral lung transplantation: Preliminary results. Interact. Cardiovasc. Thorac. Surg. 10.1093/icvts/ivw135 (2016). DOI: 10.1093/icvts/ivw135
Filipiak, W. et al. A compendium of volatile organic compounds (VOCs) released by human cell lines. Curr. Med. Chem. 23(20), 2112–2131. 10.2174/0929867323666160510122913 (2016). DOI: 10.2174/0929867323666160510122913
Bos, L. D. J. Diagnosis of acute respiratory distress syndrome by exhaled breath analysis. Ann. Transl. Med. 6(2), 33–33. 10.21037/atm.2018.01.17 (2018). DOI: 10.21037/atm.2018.01.17
Zhi, G., Xin, W., Ying, W., Guohong, X. & Shuying, L. “ Obesity Paradox ” in acute respiratory distress syndrome: Asystematic review and meta-analysis. PLoS ONE 10.1371/journal.pone.0163677 (2016). DOI: 10.1371/journal.pone.0163677
Nandor, M., Royston, D. & Yacoub, M. Pro: Lung transplantation should be routinely performed with cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 14(6), 739–745. 10.1053/jcan.2000.18592 (2000). DOI: 10.1053/jcan.2000.18592
Fisher, A. et al. An observational study of Donor Ex Vivo Lung Perfusion in UK lung transplantation: DEVELOP-UK. Health Technol. Assess. 10.3310/hta20850 (2016). DOI: 10.3310/hta20850
Beccaria, M. et al. Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography: Time of flight mass spectrometry and machine learning. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 10.1016/j.jchromb.2018.01.004 (2018). DOI: 10.1016/j.jchromb.2018.01.004
Beccaria, M. et al. Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques. J. Breath Res. 10.1088/1752-7163/aae80e (2018). DOI: 10.1088/1752-7163/aae80e
Marczin, N., Riedel, B., Gal, J., Polak, J. & Yacoub, M. Exhaled nitric oxide during lung transplantation. Lancet 350(6), 1681–1682 (1997). DOI: 10.1016/S0140-6736(05)64281-X
Romano, R., Cristescu, S. M., Risby, T. H. & Marczin, N. Lipid peroxidation in cardiac surgery: Towards consensus on biomonitoring, diagnostic tools and therapeutic implementation. J. Breath Res. 10.1088/1752-7163/aa9856 (2018). DOI: 10.1088/1752-7163/aa9856
Boshier, P. R. et al. On-line, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: A feasibility study. Analyst. 10.1039/c1an15356k (2011). DOI: 10.1039/c1an15356k
Diamond, J. M. et al. Peripheral blood gene expression changes associated with primary graft dysfunction after lung transplantation. Am. J. Transpl. 17(7), 1770–1777. 10.1111/ajt.14209 (2017). DOI: 10.1111/ajt.14209