Synthesis and radioligand binding studies of C-5- and C-8-substituted 1-(3,4-dimethoxybenzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums as SK channel blockers related to N-methyl-laudanosine and N-methyl-noscapine
[en] The synthesis and the 125 I-apamin binding studies of original C-5- and C-8-substituted 143,4-dimethoxy-benzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums and 1-(3,4-dimethoxy-benzyl)-6,6-dimethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridiniums were performed in order to find a reversible and selective SK channel blocker structurally related to N-methyl-laudanosine and N-methyl-noscapine. A bulky alkyl substituent in the C-8 position of the tetrahydroisoquinoline produces a clear increase in the affinity for the apamin sensitive binding sites. The presence of an electron-withdrawing group in the C-5 and C-8 positions is not a suitable substitution for the affinity of drugs structurally related to N-methyl-laudanosine. Thiophenic analogues and 8-methoxy derivatives possess a poor affinity for the apamin sensitive binding sites. Electrophysiological studies performed with the most effective compound showed a blockade of the apamin sensitive afterhyperpolarization in rat dopaminergic neurons.
Scuvée-Moreau, Jacqueline ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie - Département des sciences biomédicales et précliniques
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Liégeois, Jean-François ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Language :
English
Title :
Synthesis and radioligand binding studies of C-5- and C-8-substituted 1-(3,4-dimethoxybenzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums as SK channel blockers related to N-methyl-laudanosine and N-methyl-noscapine
Publication date :
28 July 2005
Journal title :
Journal of Medicinal Chemistry
ISSN :
0022-2623
eISSN :
1520-4804
Publisher :
Amer Chemical Soc, Washington, United States - Washington
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Sah, P. Ca2+-activated K+ current in neurons: Types, physiological roles and modulation. Trends Neurosci. 1996, 19, 150-154.
Vergara, C.; LaTorre, R.; Marrion, N. V.; Adelman, J. P. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 1998, 8, 321-329.
Kolher, M.; Hirschberg, B.; Bond, C. T.; Kinzie, J. M.; Marrion, N. V.; Maylie, J.; Adelman, J. P. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 1996, 273, 1709-1714.
Stocker, M.; Krause, M.; Pedarzani, P. An apamin-sensitive Ca 2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 4662-4667.
Stocker, M.; Pedarzani, P. Differential distribution of three Ca 2+-activated K+ channel subunits SK(1-3) in the adult rat central nervous system. Mol. Cell. Neurosci. 2000, 15, 476-493.
Messier, C.; Mourre, C.; Bontempi, B.; Sif, J.; Lazdunski, M.; Destrade, C. Effect of apamin, a toxin that inhibits calcium-dependent potassium channels, on learning and memory processes. Brain Res. 1991, 551, 322-326.
Deschaux, O.; Bizot, J. C.; Goyffon, M. Apamin improves learning in an object recognition task in rats. Neurosci. Lett. 1997, 222, 159-162.
Ikonen, S.; Riekkinen, P., Jr. Effect of apamin on memory processing of hippocampal-lesioned mice. Eur. J. Pharmacol. 1999, 382, 151-156.
Van der Staay, F. J.; Fanelli, R. J.; Blokland, A.; Schmidt, B. H. Behavioral effects of apamin, a selective inhibitor of the SKCa channel, in mice and rats. Neurosci. Biobehav. Rev. 1999, 23, 1087-1110.
Fournier, C.; Kourrich, S.; Soumireu-Mourat, B.; Mourre, C. Apamin improves reference memory but not procedural memory in rats by blocking small conductance Ca2+-activated K+channels in an olfactory discrimination task, Behav. Brain Res. 2001, 121, 81-93.
Pedarzani, P.; Mosbacher, J.; Rivard, A.; Cingolani, L. A.; Oliver, D.; Stocker, M.; Adelman, J. P.; Fakler, B. Control of electrical activity in central neurons by modulating the gating of small conductance Ca 2+-activated K+ channels. J. Biol. Chem. 2001, 276, 9762-9769.
Steketee, J. D.; Kalavas, P. W. Effect of microinjections of apamin into the A10 dopamine region of rats: A behavioural and neurochemical analysis. J. Pharmacol. Exp. Ther. 1990, 254, 711-719.
Shepard, P. D.; Bunney, B. S. Repetitive firing properties of putative dopamine-containing neurons in vitro: Regulation by an apamin-sensitive Ca 2+-activated K+ conductance. Exp. Brain Res. 1991, 86, 141-150.
Seutin, V.; Johnson, S. V.; North, R. A. Apamin increases NMDA-induced burst firing of rat mesencephalic dopamine neurons. Brain Res. 1993, 630, 341-344.
Vincent, J. P.; Schweitz, H.; Lazdunski, M. Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system. Biochemistry 1975, 14, 2521-2525.
Zerrouk, H.; Lavaba-Djerbari, F.; Fremont, V.; Meki, A.; Darbon, H.; Mansuelle, P.; Oughuideni, R.; Van Rietschoten, J.; Rochat, H.; Martin-Eauclaire, M. F. Characterization of PO1, a new peptide ligand of the apamin-sensitive Ca2+-activated K+ channel. Int. J. Pept. Protein Res. 1996, 48, 514-521.
Campos Rosa, J.; Galanakis, D.; Piergentili, A.; Bhandari, K.; Ganellin, C. R.; Dunn, P. M.; Jenkinson, D. H. Synthesis, molecular modelling, and pharmacological testing of bis-quinolinium cyclophanes: Potent, nonpeptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. J. Med. Chem. 2000, 43, 420-431.
Johnson, S. W.; Seutin, V. Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents. Neurosci. Lett. 1997, 231, 13-16.
Scuvée-Moreau, J.; Liégeois, J.-F.; Massotte, L.; Seutin, V. Methyl-laudanosine: A new pharmacological tool to investigate the function of small-conductance Ca2+-activated K+ channels. J. Pharmacol. Exp. Ther. 2002, 302, 1176-1183.
Scuvée-Moreau, J.; Boland, A.; Graulich, A.; Van Overmeire, L.; D'hoedt, D.; Graulich-Lorge, F.; Thomas, E.; Abras, A.; Stocker, M.; Liégeois, J.-F.; Seutin, V. Electrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices. Br. J. Pharmacol. 2004, 143, 753-764.
Brown, W. D.; Gouliaev, A. H. Bromination of isoquinoline, quinoline, quinazoline and quinoxaline in strong acid. Synthesis 2002, 83-86.
Osborn, A. R.; Schofield, K.; Short, L. N. Studies of the amino-isoquinolines, -cinnolines, and -quinazolines. J. Chem. Soc. 1956, 4191-4206.
Hendrickson, J. B.; Rodriguez, C. An efficient synthesis of substituted isoquinolines. J. Org. Chem. 1983, 48, 3344-3346.
Graulich, A.; Liégeois, J.-F. A rapid synthesis of thieno[2,3-c]-pyridine and 2-substituted thieno[2,3-c]pyridines. Synthesis 2004, 1935-1937.
Jones, G. The synthesis of some dimethyl- and ethyl-isoquinolines. J. Chem. Soc. 1960, 1918-1923.
Popp, F. D. Developments in the chemistry of Reissert compounds (1968-1978). Adv. Heterocycl. Chem. 1979, 24, 187-214.
Ruchirawat, S.; Phadungkul, N.; Chuankamnerdkarn, M.; Thebtaranonth, C. A versatile synthesis of Reissert compounds. Heterocycles 1977, 6, 43-46.
Bass, R. J.; Popp, F. D.; Kant, J. The thieno[2,3-c]pyridine Reissert compound. J. Heterocycl. Chem. 1984, 21, 1119-1120.
Seutin, V.; Johnson, S. W. Recent advances in the pharmacology of quaternary salts of bicuculline. Trends Pharmacol. Sci. 1999, 20, 268-270.
Graulich, A.; Scuvée-Moreau, J.; Seutin, V.; Liégeois, J.-F. Synthesis and biological evaluation of N-methyl-laudanosine iodide analogues as potential SK channel blockers. Bioorg. Med. Chem. 2005, 13, 1201-1209.
Wadsworth, J. D. F.; Doorty, K. B.; Strong, P. N. Comparable 30-kDa apamin binding polypeptides may fulfill equivalent roles within putative subtypes of small conductance Ca2+-activated K+ channels J. Biol. Chem. 1994, 269, 18053-18061.
Finlayson, K.; McLuckie, J.; Hern, J.; Aramori, I.; Olverman, H. J.; Kelly, J. S. Characterization of [125I]-apamin binding sites in rat brain membranes and HEK293 cells transfected with SK channel subtypes. Neuropharmacology 2001, 41, 341-350.
Granier, C.; Pedroso Muller, E.; Van Rietschoten, J. Use of synthetic analogues for a study on the structure-activity relationship of apamin. Eur. J. Biochem. 1978, 82, 293-299.
Habermann, E. Apamin. Pharmacol. Ther. 1984, 25, 255-270.
Galanakis, D.; Ganellin, C. R.; Chen, J.-Q.; Gunasekera, D.; Dunn, P. M. Bis-quinolinium cyclophanes: Towards a pharmacophore model for the blockade of apamin-sensitive SKCa channels in sympathetic neurons. Bioorg. Med. Chem. Lett. 2004, 14, 4231-4235.
Hartree, E. F. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 1972, 48, 422-427.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.