Article (Scientific journals)
Spline wavelets in periodic Sobolev spaces and application to high order collocation methods
Bastin, Françoise; Boigelot, Christine; Laubin, Pascal
2003In Revista de la Union Matematica Argentina, 44 (1), p. 53-74
Peer reviewed
 

Files


Full Text
bbl5.pdf
Publisher postprint (240.53 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Sobolev spaces; splines; wavelets; collocation methods
Abstract :
[en] In this paper, we present a particular family of spline wavelets constructed from the Chui-Wang Riesz basis of $L^2(\mathbb{R})$. The construction is explicit, allowing the study of specific functional properties and rather easy handling in numerical computations. This family constitutes a Riesz hierarchical basis in periodic Sobolev spaces. We also present a necessary and sufficient condition of strong ellipticity for pseudodifferential operators obtained with respect to these splines. It uses a new expression for the numerical symbol of the boundary integral operators. This expression allows us to use efficiently collocation methods with different meshes and splines.
Disciplines :
Mathematics
Author, co-author :
Bastin, Françoise ;  Université de Liège - ULiège > Département de mathématique > Analyse, analyse fonctionnelle, ondelettes
Boigelot, Christine
Laubin, Pascal
Language :
English
Title :
Spline wavelets in periodic Sobolev spaces and application to high order collocation methods
Publication date :
2003
Journal title :
Revista de la Union Matematica Argentina
ISSN :
0041-6932
Publisher :
Union Matematica Argentina, Argentina
Volume :
44
Issue :
1
Pages :
53-74
Peer reviewed :
Peer reviewed
Available on ORBi :
since 20 November 2009

Statistics


Number of views
134 (10 by ULiège)
Number of downloads
5 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi