[en] Small-conductance Ca(2+)-activated K(+) channels (SK channels) underlie the prolonged postspike afterhyperpolarization (AHP) observed in many central neurons and play an important role in modulating neuronal activity. However, a lack of specific and reversible blockers of these channels hampers their study in various experimental conditions. Because previous work has shown that bicuculline salts block these channels, we examined whether related alkaloids, namely laudanosine quaternary derivatives, would produce similar effects. Intracellular recordings were performed on rat midbrain dopaminergic neurons and hippocampus CA1 pyramidal cells. Binding experiments were performed on rat cerebral cortex membranes. Laudanosine, methyl-laudanosine, and ethyl-laudanosine blocked the apamin-sensitive AHP of dopaminergic neurons with mean IC(50) values of 152, 15, and 47 microM, respectively. The benzyl and butyl derivatives were less potent. Methyl-laudanosine had no effect on the I(h) current, action potential parameters, or membrane resistance of dopaminergic cells, or on the decrease in input resistance induced by muscimol, indicating a lack of antagonism at GABA(A) receptors. Interestingly, 100 microM methyl-laudanosine induced a significant increase in spiking frequency of dopaminergic neurons but not of CA1 pyramidal cells, suggesting the possibility of regional selectivity. Binding experiments on laudanosine derivatives were in good agreement with electrophysiological data. Moreover, methyl-laudanosine has no affinity for voltage-gated potassium channels, and its affinity for SK channels (IC(50) 4 microM) is superior to its affinity for muscarinic (IC(50) 114 microM) and neuronal nicotinic (IC(50) > or =367 microM) receptors. Methyl-laudanosine may be a valuable pharmacological tool to investigate the role of SK channels in various experimental models.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Scuvée-Moreau, Jacqueline ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie - Département des sciences biomédicales et précliniques
Liégeois, Jean-François ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Massotte, Laurent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Language :
English
Title :
Methyl-laudanosine: A new pharmacological tool to investigate the function of small-conductance Ca2+-activated K+ channels
Publication date :
September 2002
Journal title :
Journal of Pharmacology and Experimental Therapeutics
ISSN :
0022-3565
eISSN :
1521-0103
Publisher :
Amer Soc Pharmacology Experimental Therapeutics, Bethesda, United States - Maryland
Antonarakis S.E., Blouin J.L., Lasseter V.K., Gehrig C., Radhakrishna U., Nestadt G., Housman D.E., Kazazian H.H., Kalman K., Gutman G. (1999) Lack of linkage or association between schizophrenia and the polymorphic trinucleotide repeat within the KCNN3 gene on chromosome 1q21. Am J Med Genet 88:348-351.
Campos Rosa J., Galanakis D., Piergentili A., Bhandari K., Ganellin C.R., Dunn P.M., Jenkinson D.H. (2000) Synthesis, molecular modeling and pharmacological testing of bis-quinolinium cyclophanes: Potent, non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. J Med Chem 43:420-431.
Chandy K.G., Fantino E., Wittekindt O., Kalman K., Tong L.L., Ho T.H., Gutman G.A., Crocq M.A., Ganguli R., Nimgaonkar V. (1998) Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: A candidate for schizophrenia and bipolar disorder?. Mol Psychiatry 3:32-37.
Dror V., Shamir E., Ghanshani S., Kimhi R., Swartz M., Barak Y., Weizman R., Avivi L., Litmanovitch T., Fantino E. (1999) hKCa3/KCNN3 potassium channel gene: Association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol Psychiatry 4:254-260.
Dunn P.M., Benton D.C., Campos Rosa J., Ganellin C.R., Jenkinson D.H. (1996) Discrimination between subtypes of apamin-sensitive Ca(2+)- activated K+ channels by gallamine and a novel bis-quaternary quinolinium cyclophane, UCL 1530. Br J Pharmacol 117:35-42.
Fournier C., Kourrich S., Soumireu-Mourat B., Mourre C. (2001) Apamin improves reference memory but not procedural memory in rats by blocking small conductance Ca(2+)-activated K(+) channels in an olfactory discrimination task. Behav Brain Res 121:81-93.
Grace A.A., Onn S.P. (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463-3481.
Harris N.C., Constanti A. (1995) Mechanisms of block by ZD7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro. J Neurophysiol 74:2366-2378.
Hugues M., Duval D., Kitabgi P., Lazdunski M., Vincent J.P. (1982) Preparation of a pure monoiodo derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes. J Biol Chem 257:2762-2769.
Ikonen S., Riekkinen P. (1999) Effects of apamin on memory processing of hippocampal-lesioned mice. Eur J Pharmacol 382:151-156.
Köhler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P. (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science (Wash DC) 273:1709-1714.
Lee N.H., El-Fakahany E.E. (1991) Allosteric interactions at the m1, m2 and m3 muscarinic receptor subtypes. J Pharmacol Exp Ther 256:468-479.
McNamara J.O. (1996) Drugs effective in the therapy of the epilepsies. Goodman & Gilman's The Pharmacological Basis of Therapeutics , (Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, and Goodman Gilman A eds), McGraw-Hill, New York; 461-486.
Mercuri N.B., Bonci A., Calabresi P., Stefani A., Bernardi G. (1995) Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur J Neurosci 7:462-469.
Pabreza L.A., Dhawan S., Kellar K.J. (1991) [3H]cytisine binding to nicotinic cholinergic receptors in brain. Mol Pharmacol 39:9-12.
Richards M.H. (1990) Rat hippocampal autoreceptors are similar to the M2 (cardiac) subtype: Comparison with hippocampal M1, atrial M2 and ileal M3 receptors. Br J Pharmacol 99:753-761.
Sah P. (1996) Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation. Trends Neurosci 19:150-154.
Scuvée-Moreau J., Seutin V., Dresse A. (1997) A quantitative pharmacological study of the cholinergic depolarization ofhippocampal pyramidal cells in rat brain slices. Arch Physiol Biochem 105:365-372.
Seutin V., Johnson S.W. (1999) Recent advances in the pharmacology of quaternary salts of bicuculline. Trends Pharmacol Sci 20:268-270.
Seutin V., Johnson S.W., North R.A. (1993) Apamin increases NMDA-induced burst firing of rat mesencephalic dopamine neurons. Brain Res 630:341-344.
Seutin V., Scuvée-Moreau J., Dresse A. (1997) Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones. Neuropharmacology 36:1653-1657.
Sharples C.G.V., Kaiser S., Soliakov L., Marks M.J., Collins A.C., Washburn M., Wright E., Spencer J.A., Gallagher T., Whiteaker P. (2000) UB-165: A novel nicotinic agonist with subtype selectivity implicates α4β2 subtype in the modulation of dopamine release from rat striatal synaptosomes. J Neurosci 20:2783-2791.
Shepard P.D., Bunney B.S. (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: Regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp Brain Res 86:141-150.
Sorensen R.G., Blaustein M.P. (1989) Rat brain dendrotoxin receptors associated with voltage-gated potassium channels: Dendrotoxin binding and receptor solubilization. Mol Pharmacol 36:689-698.
Stocker M., Krause M., Pedarzani P. (1999) An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 96:4662-4667.
Stocker M., Pedarzani P. (2000) Differential distribution of three Ca2+-activated K+ channel subunits SK(1-3) in the adult rat central nervous system. Mol Cell Neurosci 15:476-493.
Stroøbæk D., Joørgensen T.D., Christophersen P., Ahring P.K., Olensen S. (2000) Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK 293 cells. Br J Pharmacol 129:991-999.
Tacconi S., Carletti R., Bunnemann B., Plumpton C., Merlo Pich E., Terstappen G.C. (2001) Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity. Neuroscience 102:209-215.
Wolfart J., Neuhoff H., Franz O., Roeper J. (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443-3456.