Topology optimization; Topological gradient; Buckling constraints; Generalized eigenvalue problem
Abstract :
[en] Structural topology optimization aims to design mechanical structures by seeking the optimal material layout within a given design space. Within this framework, this paper addresses the minimization of the structural mass under stress and buckling constraints, formulated as a nonlinear combinatorial optimization problem. An algorithm is proposed for such a problem, that follows a topological gradient-based approach. The adjoint method is applied to efficiently compute the constraint gradients. An iterative algorithm for buckling analysis, featuring low memory requirements, is also proposed. Numerical results, including a real application arising in the aeronautical field, illustrate the efficiency of the two proposed algorithms.
Allaire, G., A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes. Ingénieurs de l'Automobile 836 (2015), 33–36.
Allaire, G., Jouve, F., Toader, A.M., Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194:1 (2004), 363–393.
Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., et al. LAPACK Users’ guide. 1999, SIAM.
Bendsoe, M.P., Sigmund, O., Topology Optimization: Theory, Methods, and Applications. 2013, Springer Science & Business Media.
Bian, X., Fang, Z., Large-scale buckling-constrained topology optimization based on assembly-free finite element analysis. Adv. Mech. Eng., 9, 2017 1687814017715422.
Bian, X., Yadav, P., Suresh, K., Assembly-free buckling analysis for topology optimization. Proceedings of the ASME-IDETC Conference, Boston, MA, 2015.
Browne, P., Budd, C., Gould, N., Kim, H., Scott, J., A fast method for binary programming using first-order derivatives, with application to topology optimization with buckling constraints. Int. J. Numer. Methods Eng. 92 (2012), 1026–1043.
Bruyneel, M., Colson, B., Remouchamps, A., Discussion on some convergence problems in buckling optimisation. Struct. Multidiscip. Optim. 35 (2008), 181–186.
Calvel, S., Conception d'organes automobiles par optimisation topologique. Université Paul Sabatier-Toulouse III, 2004 Ph.D. thesis.
Céa, J., Garreau, S., Guillaume, P., Masmoudi, M., The shape and topological optimizations connection. Comput. Methods Appl. Mech. Eng. 188 (2000), 713–726.
Choi, K.K., Kim, N.H., Structural Sensitivity Analysis and Optimization 1: Linear Systems. 2006, Springer Science & Business Media.
Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., Concepts and Applications of Finite Element Analysis Volume 4. 1974, Wiley New York.
Costa, G., Montemurro, M., Eigen-frequencies and harmonic responses in topology optimisation: a cad-compatible algorithm. Eng. Struct., 214, 2020, 110602.
Costa, G., Montemurro, M., Pailhès, J., A 2d topology optimisation algorithm in nurbs framework with geometric constraints. Int. J. Mech. Mater. Des. 14:4 (2018), 669–696.
Costa, G., Montemurro, M., Pailhès, J., Minimum length scale control in a nurbs-based simp method. Comput. Methods Appl. Mech. Eng. 354 (2019), 963–989.
Costa, G., Montemurro, M., Pailhès, J., Nurbs hyper-surfaces for 3D topology optimization problems. Mechanics of Advanced Materials and Structures, 2019, (pp.1–20).
Costa, G., Montemurro, M., Pailhès, J., Perry, N., Maximum length scale requirement in a topology optimisation method based on nurbs hyper-surfaces. CIRP Ann. 68:1 (2019), 153–156.
Deaton, J.D., Grandhi, R.V., A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49:1 (2014), 1–38.
Deng, S., Suresh, K., Multi-constrained topology optimization via the topological sensitivity. Struct. Multidiscip. Optim. 51 (2015), 987–1001.
Deng, S., Suresh, K., Topology optimization under thermo-elastic buckling. Struct. Multidiscip. Optim. 55:5 (2017), 1759–1772.
Dunning, P.D., Ovtchinnikov, E., Scott, J., Kim, H.A., Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver. Int. J. Numer. Methods Eng. 107 (2016), 1029–1053.
Duysinx, P., Sigmund, O., New developments in handling stress constraints in optimal material distribution. Proceedings of the 7th AIAA/USAF/NASAISSMO Symposium on Multidisciplinary Analysis and Optimization, 1, 1998, 1501–1509.
Duysinx, P., Van Miegroet, L., Lemaire, E., Brüls, O., Bruyneel, M., Topology and generalized shape optimization: why stress constraints are so important?. Int. J. Simul. Multi. Des. Optim. 2 (2008), 253–258.
Eschenauer, H.A., Kobelev, V.V., Schumacher, A., Bubble method for topology and shape optimization of structures. Struct. Multidiscip. Optim. 8 (1994), 42–51.
Feijoo, R., Novotny, A., Taroco, E., Padra, C., The topological-shape sensitivity method in two-dimensional linear elasticity topology design. Appl. Comput. Mech. Struct. Fluids, 2005.
Gao, J., Luo, Z., Xiao, M., Gao, L., Li, P., A nurbs-based multi-material interpolation (n-mmi) for isogeometric topology optimization of structures. Appl. Math. Model 81 (2020), 818–843.
Gao, J., Xiao, M., Gao, L., Yan, J., Yan, W., Isogeometric topology optimization for computational design of re-entrant and chiral auxetic composites. Comput. Methods Appl. Mech. Eng., 362, 2020, 112876.
Gao, X., Li, Y., Ma, H., Chen, G., Improving the overall performance of continuum structures: a topology optimization model considering stiffness, strength and stability. Comput. Methods Appl. Mech. Eng., 359, 2020, 112660.
Golub, G.H., Ye, Q., Inexact inverse iteration for generalized eigenvalue problems. BIT Numer. Math. 40 (2000), 671–684.
Huang, X., Xie, M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. 2010, John Wiley & Sons.
Huang, X., Xie, Y.M., Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech., 43(3), 2009, 33.
Hughes, T.J., Levit, I., Winget, J., An element-by-element solution algorithm for problems of structural and solid mechanics. Comput. Methods Appl. Mech. Eng. 36 (1983), 241–254.
Ipsen, I.C., Computing an eigenvector with inverse iteration. SIAM Rev. 39 (1997), 254–291.
Kingman, J.J., Tsavdaridis, K., Toropov, V., Applications of topology optimisation in structural engineering: high-rise buildings & steel components. Jordan J. Civil Eng. 9 (2015), 335–357.
Kreisselmeier, G., Steinhauser, R., Systematic control design by optimizing a vector performance index. Computer Aided Design of Control Systems, 1980, Elsevier, 113–117.
Krishnakumar, A., Suresh, K., Hinge-free compliant mechanism design via the topological level-set. J. Mech. Des., 137, 2015, 031406.
Lindgaard, E., Dahl, J., On compliance and buckling objective functions in topology optimization of snap-through problems. Struct. Multidiscip. Optim. 47 (2013), 409–421.
Luo, Q., Tong, L., Structural topology optimization for maximum linear buckling loads by using a moving isosurface threshold method. Struct. Multidiscip. Optim. 52 (2015), 71–90.
Mirzendehdel, A.M., Suresh, K., A pareto-optimal approach to multimaterial topology optimization. J. Mech. Des., 137(10), 2015.
Neves, M., Rodrigues, H., Guedes, J., Generalized topology design of structures with a buckling load criterion. Struct. Multidiscip. Optim. 10 (1995), 71–78.
Novotny, A., Feijóo, R., Taroco, E., Padra, C., Topological sensitivity analysis for three-dimensional linear elasticity problem. Comput. Methods Appl. Mech. Eng. 196 (2007), 4354–4364.
Ovtchinnikov, E.E., Computing several eigenpairs of hermitian problems by conjugate gradient iterations. J. Comput. Phys. 227 (2008), 9477–9497.
Remouchamps, A., Bruyneel, M., Fleury, C., Grihon, S., Application of a bi-level scheme including topology optimization to the design of an aircraft pylon. Struct. Multidiscip. Optim. 44 (2011), 739–750.
Rodriguez, T., Montemurro, M., Le Texier, P., Pailhès, J., Structural displacement requirement in a topology optimization algorithm based on isogeometric entities. J. Optim. Theory Appl. 184:1 (2020), 250–276.
Saad, Y., Yeung, M., Erhel, J., Guyomarc'h, F., A deflated version of the conjugate gradient algorithm. SIAM J. Scient. Comput. 21 (2000), 1909–1926.
Sigmund, O., Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16:1 (1998), 68–75.
Shanglong, Z., Arun, L., NoratoDorn, J.A., S, W., Adaptive mesh refinement for topology optimization with discrete geometric components. Comput. Methods Appl. Mech. Eng., 364, 2020.
Sokolowski, J., Zochowski, A., On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999), 1251–1272.
Suresh, K., A 199-line matlab code for pareto-optimal tracing in topology optimization. Struct. Multidiscip. Optim. 42 (2010), 665–679.
Suresh, K., Efficient generation of large-scale pareto-optimal topologies. Struct. Multidiscip. Optim. 47 (2013), 49–61.
K. Suresh, A. Ramani, A. Kaushik, An adaptive weighting strategy for multi-load topology optimization. in, Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference(2012).
Suresh, K., Takalloozadeh, M., Stress-constrained topology optimization: a topological level-set approach. Struct. Multidiscip. Optim. 48 (2013), 295–309.
Timoshenko, S., Gere, J., Theory of Elastic stability. 1960, McGraw Hill Book Company.
Trefethen, L.N., Bau, D. III, Numerical Linear Algebra volume 50. 1997, Siam.
Verbart, A., Langelaar, M., Van Keulen, F., A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct. Multidiscip. Optim. 55 (2017), 663–679.
Wang, M.Y., Wang, X., Guo, D., A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192:1 (2003), 227–246.
Yadav, P., Suresh, K., Large scale finite element analysis via assembly-free deflated conjugate gradient. J. Comput. Inf. Sci. Eng., 14(4), 2014, 041008.
Zhu, J., Zhang, W., Xia, L., Topology optimization in aircraft and aerospace structures design. Proceedings of the Archives of Computational Methods in Engineering, 2015, 10.1007/s11831-015-9151-2.