Saegerman, Claude ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appl. aux sc. vétér.
Nguyet Diep, Anh
Renault, Véronique ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appl. aux sc. vétér.
Donneau, Anne-Françoise ; Université de Liège - ULiège > Département des sciences de la santé publique > Biostatistique
Stamatakis, Lambert
Coppieters, Wouter ; Université de Liège - ULiège > Dpt. de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020). DOI: 10.1038/s41564-020-0695-z
Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect. Dis. S1473–3099, 30285–30287 (2020).
Burke, R. M. et al. Active monitoring of persons exposed to patients with confirmed COVID-19—United States, January-February 2020. Morb. Mortal. Wkly Rep. 69, 245–246 (2020). DOI: 10.15585/mmwr.mm6909e1
Saegerman, C. et al. Clinical decision support tool for diagnosis of COVID-19 in hospitals. PLoS One 6, e0247773 (2021). DOI: 10.1371/journal.pone.0247773
Kimball, A. et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility-King County, Washington, March 2020. Morb. Mortal. Wkly Rep. 69, 377–381 (2020). DOI: 10.15585/mmwr.mm6913e1
Buitrago-Garcia, D. et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: a living systematic review and meta-analysis. PLOS Med. 17, e1003346 (2020). DOI: 10.1371/journal.pmed.1003346
Wilmes, P. et al. SARS-CoV-2 transmission risk from asymptomatic carriers: results from a mass screening programme in Luxembourg. Lancet Reg. Health Eur. 4, 100056 (2021). DOI: 10.1016/j.lanepe.2021.100056
Wu, Z. & McGoogan, J. M. Asymptomatic and pre-symptomatic COVID-19 in China. Infect. Dis. Poverty 9, 72 (2020). DOI: 10.1186/s40249-020-00679-2
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2021. https://covid19.who.int/ (Accessed 12 June 2020).
Bayle, C. et al. Asymptomatic SARS COV-2 carriers among nursing home staff: a source of contamination for residents. Infect Dis Now 51, 197–200 (2021). DOI: 10.1016/j.idnow.2020.11.008
Agentschap Zorg en Gezondheid. Extra Maatregelen voor de Bescherming van Ouderen Tegen Coronavirus. https://www.zorg-en-gezondheid.be/extra-maatregelen-voor-de-bescherming-van-ouderen-tegen-coronavirus (Accessed 16 July) (2021).
Hasan, T., Beardsley, J., Marais, B. J., Thu, A. N. & Fox, G. J. The implementation of mass-vaccination against SARS-CoV-2: a systematic review of existing strategies and guidelines. Vaccines 9, 326 (2021). DOI: 10.3390/vaccines9040326
Barajas-Nava, L. A. Development of SARS-CoV-2 vaccines. Bol. Med. Hosp. Infant Mex. 78, 66–74 (2021).
Rombeaux, J. M. Maisons de repos et maisons de repos et de soins. Radioscopie du secteur public 2017. Fédération des CPAS de l’Union des Villes et Communes de Wallonie et la Fédération des CPAS de Brulocalis, Bruxelles, Belgique, 22 pages. https://www.uvcw.be/no_index/files/1385-1379-2019-09-radioscopie-2017---jmr-definitif.pdf (2017).
Lamb, Y. N. BNT162b2 mRNA COVID‑19 vaccine: first approval. Drugs 81, 495–501 (2021). DOI: 10.1007/s40265-021-01480-7
Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020). DOI: 10.1038/s41586-020-2622-0
World Health Organization. mRNA vaccines against COVID-19: Pfizer-BioNTech COVID-19 vaccineBNT162b2. Prepared by the Strategic Advisory Group of Experts (SAGE) on Immunization Working Group on COVID-19 vaccines. Document WHO/2019-nCoV/vaccines/SAGE_evaluation/BNT162b2/2020.1 https://apps.who.int/iris/handle/10665/338096 (Accessed 22 Dec) (2020).
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020). DOI: 10.1056/NEJMoa2034577
Saegerman, C. et al. Repetitive saliva-based mass screening as a tool for controlling SARS-CoV-2 transmission in nursing homes. Transboundary Emerg. Dis. 10.1111/tbed.14280 (2021). DOI: 10.1111/tbed.14280
Freed, N. E., Vlková, M., Faisal, M. B. & Silander, O. K. Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding. Biol. Methods Protocols 5, bpaa014 (2020). DOI: 10.1093/biomethods/bpaa014
Heinze, G. & Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med. 21, 2409–2419 (2002). DOI: 10.1002/sim.1047
Petrie, A. Watson, P. Statistics for Veterinary and Animal Science. This edition, John Wiley & Sons, Ltd, West Sussex, UK, 391 pages (2013).
Belgian COVID-19 Federal Plateform, 2021. Determining limits and concentration linearity range for SARS-CoV-2 detection in samples from the Federal plateform. Date of the experiment: February 2 (2021).
Dumas-Mallet, E., Button, K. S., Boraud, T., Gonon, F. & Munafò, M. R. Low statistical power in biomedical science: a review of three human research domains. R. Soc. Open Sci. 4, 160254 (2017). DOI: 10.1098/rsos.160254
Czumbel, L. M. et al. Saliva as a candidate for COVID-19 diagnostic testing: a meta-analysis. Front. Med. 7, 465 (2020). DOI: 10.3389/fmed.2020.00465
Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021). DOI: 10.1038/s41591-021-01296-8
Fakheran, O., Dehghannejad, M. & Khademi, A. Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: a scoping review. Infect. Dis. Poverty 9, 100 (2020). DOI: 10.1186/s40249-020-00728-w
Wyllie, A. L. et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med 383, 1283–1286 (2020). DOI: 10.1056/NEJMc2016359
Alpert, T. et al. Sequencing SARS-CoV-2 Genomes from Saliva. Preprint at medRxiv https://doi.org/10.1101/2021.06.21.21259289 (2021).
Lohse, S. et al. Pooling of samples for testing for SARS-CoV-2 in asymptomatic people. Lancet Infect Dis 20, 1231–1232 (2020). DOI: 10.1016/S1473-3099(20)30362-5
Li, Y. et al. Clinical characteristics and viral shedding kinetics of 38 asymptomatic patients with coronavirus disease 2019: a retrospective observational study. Medicine 99, e23547 (2020). DOI: 10.1097/MD.0000000000023547
Eberhardt, J. N., Breuckmann, N. P. & Eberhardt, C. S. Challenges and issues of SARS-CoV-2 pool testing. Lancet Infect. Dis. 20, 1233–1234 (2020). DOI: 10.1016/S1473-3099(20)30467-9
Rella, S. A., Kulikova, Y. A., Dermitzakis, M. T. & Kondrashov, F. A. Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains. Sci. Rep. 11, 15729 (2021). DOI: 10.1038/s41598-021-95025-3
Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Comp. Study Sci. Transl. Med. 13, eabd2223 (2021). DOI: 10.1126/scitranslmed.abd2223
Jalkanen, P. et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nat. Commun. 12, 3991 (2021). DOI: 10.1038/s41467-021-24285-4
Becker, M. Immune response to SARS-CoV-2 variants of concern in vaccinated individuals. Nat. Commun. 12, 3109.
Planas, D. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature https://doi.org/10.1038/s41586-021-03777-9 (2021).
Levine-Tiefenbrun, M. et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 27, 790–792 (2021). DOI: 10.1038/s41591-021-01316-7
Regev-Yochay, G. et al. Decreased infectivity following BNT162b2 vaccination: a prospective cohort study in Israel. Lancet Reg. Health Eur. 7, 100150 (2021). DOI: 10.1016/j.lanepe.2021.100150